Infection biology: The elusive third factor

Jun 22, 2012

Researchers from Ludwig-Maximilians-Universität (LMU) in Munich have identified an enzyme that is involved in a modification pathway that is essential for bacterial pathogenicity. Because it shows no similarity to other known proteins, it may be an ideal target for development of novel antimicrobial drugs.

Studies on a number of pathogenic bacteria have shown that these strains become pathogenic only when an called elongation factor P (EF-P) is chemically modified on a conserved lysine residue. EF-P is a universally conserved translation factor, which is involved in protein synthesis. Two enzymes are known to be involved in modifying the conserved lysine of EF-P, however these enzymes cannot fully account for the pattern of modification seen on EF-P in living cells.

The mystery molecule

Thus, at least one other protein must be involved in the modification process – however to date it has proved to be particularly elusive. Now a research team led by LMU biochemist Daniel Wilson, who is also affiliated with the Center for Integrated Protein Science Munich (CIPSM), a Cluster of Excellence at LMU, has succeeded in identifying the mystery protein as the enzyme YfcM and showing that it displays hydroxylase activity. Strikingly, YfcM shows no sequence similarity to any other known protein and therefore may have a unique structure.

This is not the only reason why discovery of YfcM will arouse great interest. "YfcM may turn out to be an ideal target for the development of new - and urgently needed – antibiotics, however more insight will be needed to ascertain the role of the YfcM mediated hydroxylation of EF-P," says Wilson.

Explore further: Structure of world's largest single cell is reflected at the molecular level

add to favorites email to friend print save as pdf

Related Stories

Copycat protein finds a perfect match

Nov 19, 2010

As proteins are synthesized during messenger RNA translation, fresh amino acids are delivered to the ribosome of the cell by nucleic acid molecules known as transfer RNAs (tRNAs). Each amino acid has a cognate ...

Core tenets of the 'histone code' are universal

Sep 06, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Recommended for you

In a role reversal, RNAs proofread themselves

15 hours ago

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

18 hours ago

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Understanding cellular ageing

18 hours ago

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.