Infection biology: The elusive third factor

Jun 22, 2012

Researchers from Ludwig-Maximilians-Universität (LMU) in Munich have identified an enzyme that is involved in a modification pathway that is essential for bacterial pathogenicity. Because it shows no similarity to other known proteins, it may be an ideal target for development of novel antimicrobial drugs.

Studies on a number of pathogenic bacteria have shown that these strains become pathogenic only when an called elongation factor P (EF-P) is chemically modified on a conserved lysine residue. EF-P is a universally conserved translation factor, which is involved in protein synthesis. Two enzymes are known to be involved in modifying the conserved lysine of EF-P, however these enzymes cannot fully account for the pattern of modification seen on EF-P in living cells.

The mystery molecule

Thus, at least one other protein must be involved in the modification process – however to date it has proved to be particularly elusive. Now a research team led by LMU biochemist Daniel Wilson, who is also affiliated with the Center for Integrated Protein Science Munich (CIPSM), a Cluster of Excellence at LMU, has succeeded in identifying the mystery protein as the enzyme YfcM and showing that it displays hydroxylase activity. Strikingly, YfcM shows no sequence similarity to any other known protein and therefore may have a unique structure.

This is not the only reason why discovery of YfcM will arouse great interest. "YfcM may turn out to be an ideal target for the development of new - and urgently needed – antibiotics, however more insight will be needed to ascertain the role of the YfcM mediated hydroxylation of EF-P," says Wilson.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Copycat protein finds a perfect match

Nov 19, 2010

As proteins are synthesized during messenger RNA translation, fresh amino acids are delivered to the ribosome of the cell by nucleic acid molecules known as transfer RNAs (tRNAs). Each amino acid has a cognate ...

Core tenets of the 'histone code' are universal

Sep 06, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.