Helices of light: dark helices with a bright future

June 12, 2012

(Phys.org) -- Laser beams can be made to form dark as well as bright intensity helices, or corkscrews of light. In a paper shortly to appear in Optics Express, Dr Ole Steuernagel, at the University of Hertfordshire's Science and Technology Research Institute, has now shown that forming dark helices can have considerable advantages over employing their commonly considered bright cousins.

Light helices may have many fundamental and technological applications in lithography and the manipulation of particles through optical forces, such as particle trapping and particle transport. In lithography, the light helices can create with helical imprints to provide left- or right-handed optically active materials. When applied in that manipulate particles through optical forces, helices can be used as a handedness filter for twisted molecules, create twisted waveguides for trapped and even provide intertwined transport via intertwined optical helix configurations.

Dark helices are shaped like their bright helix counterparts but they are helically-shaped threads of darkness embedded in a background of bright light. And unlike bright helices, dark helices are not resolution limited and provide a better intensity contrast than bright ones. In addition, they can be generated one-by-one but, more importantly, they can also be arranged in a massively parallel fashion on a tight grid.

Dr Steuernagel explains: "Dark helices are special because of their sharper intensity contrasts and, through my research, I have shown that they tend to outperform bright helices. This is potentially important for lithographic applications to create sharply defined and contoured helical imprints."

Furthermore, in a quantum-transport setting, dark helical wave guides interact less with trapped particles than their bright counterparts. In this case the advantage of using dark over bright helices is that they do less damage to which are notoriously sensitive.

This study shows that in many cases dark helices 'can do' what bright helices will 'not be able to do' which is why Steuernagel hopes his theoretical investigation will soon be picked up by experimentalists.

Explore further: Why is the helix such a popular shape?

More information: The paper "Bright and dark helices of light" can be found at www.opticsinfobase.org/oe/home.cfm

Related Stories

Why is the helix such a popular shape?

February 18, 2005

Perhaps because they are nature's space savers Something about nature loves a helix, the ubiquitous spiral shape taken on by DNA and many other molecules found in the cells of living creatures. The shape is so useful that, ...

Switching between liquid and gel

September 2, 2005

Twisted nanostructures are an important biological motif—just think of the DNA double helix or proteins with helical sections important to their function. Researchers are anxious to produce artificial helices, which could ...

Chemists make beds with soft landings

August 18, 2008

Bedsprings aren't often found in biology. Now, chemists have succeeded in making a layer of tiny protein coils attached to a surface, much like miniature bedsprings in a frame. This thin film made of stable and very pure ...

Sonic screwdriver tightens up fundamental physics

April 20, 2012

When the scriptwriters for Doctor Who imagined a futuristic device, they came up with the Sonic Screwdriver. Now a team of physicists at the University of Dundee have taken equipment designed for MRI-guided focused ultrasound ...

Recommended for you

Ultra-cold atoms may wade through quantum friction

June 27, 2016

Theoretical physicists studying the behavior of ultra-cold atoms have discovered a new source of friction, dispensing with a century-old paradox in the process. Their prediction, which experimenters may soon try to verify, ...

Probing giant planets' dark hydrogen

June 23, 2016

Hydrogen is the most-abundant element in the universe. It's also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so much we have to learn about hydrogen.

Genetic algorithms can improve quantum simulations

June 23, 2016

(Phys.org)—Inspired by natural selection and the concept of "survival of the fittest," genetic algorithms are flexible optimization techniques that can find the best solution to a problem by repeatedly selecting for and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.