New discovery to improve efficiencies in fuel, chemical and pharmaceutical industries

Jun 28, 2012

University of Minnesota engineering researchers are leading an international team that has made a major breakthrough in developing a catalyst used during chemical reactions in the production of gasoline, plastics, biofuels, pharmaceuticals, and other chemicals. The discovery could lead to major efficiencies and cost-savings in these multibillion-dollar industries.

The research is to be published in the June 29, 2012 issue of the leading scientific journal Science.

"The impact of this new discovery is enormous," said the team's lead researcher Michael Tsapatsis, a chemical engineering and professor in the University of Minnesota College of Science and Engineering. "Every drop of gasoline we use needs a catalyst to change the oil molecules into usable gasoline during the refining process."

This research improves efficiencies by giving molecules fast access to the catalysts where the occur. Tsapatsis compared it to our use of freeways and side streets in our daily lives.

"It's faster and more efficient to use freeways to get where we want to go and exit to do our business compared to driving the side streets the entire way," he explained. "The catalysts used today are more like all side streets. Molecules move slowly and get stuck. The efficiencies of these new catalysts could lower the costs of gasoline and other products for all of us."

The research team built their prototype of the new catalyst using highly optimized ultra-thin zeolite nanosheets. They used a unique process to encourage growth of these nanosheets at 90-degree angles, similar to building a house of cards. The house-of-cards arrangement of the nanosheets makes the catalyst faster, more selective and more stable, but can be made at the same cost (or possibly cheaper) than traditional catalysts.

With faster catalysts available at no extra cost to the producer, production per manufacturing dollar will increase. With a higher output, it is conceivable that consumer costs will drop.

This new discovery builds upon previous discoveries at the University of Minnesota of ultra-thin nanosheets used as specialized molecular sieves for production of both renewable and fossil-based fuels and chemicals. These discoveries, licensed by the new Minnesota start-up company Argilex Technologies, are key components of the company's materials-based platform. The development of the new catalyst is complete, and the material is ready for customer testing.

"This breakthrough can have a major impact on both the conversion of natural gas to higher value chemicals and fuels, and on bio- and petroleum refiners," said Cesar Gonzalez, CEO of Argilex Technologies. "Using catalysts made by this novel approach, refiners will be able to obtain a higher yield of desirable products such as gasoline, diesel, ethylene and propylene. At Argilex, we envision this technology platform to become a key contributor to efficient use of natural resources and improved economics of the world's largest industries."

Researchers on the team are from around the globe. In addition to the University of Minnesota, researchers are from institutions in Tokyo, Abu Dhabi, Korea and Sweden.

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

More information: "Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching,"Science DOI: 10.1126/science.1221111

Related Stories

Blueprint from the interior of a catalyst

Sep 22, 2009

Irregularities in industrial catalysts can inhibit the conversion of crude oil, Utrecht University chemists have concluded. They were the first to provide a detailed blueprint of the interior of a commercially used catalyst ...

New Class of Catalyst Sports Shapely Selectivity

Mar 10, 2010

A new class of catalytic material has been studied by scientists at Pacific Northwest National Laboratory. Metal-organic frameworks (MOFs) display a unique three-dimensional structure that is highly selective ...

Nanotech discovery may green chemical manufacturing

Feb 16, 2010

A new nanotech catalyst developed by McGill University Chemists Chao-Jun Li, Audrey Moores and their colleagues offers industry an opportunity to reduce the use of expensive and toxic heavy metals. Catalysts are substances ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dschlink
not rated yet Jun 29, 2012
"With a higher output, it is conceivable that consumer costs will drop."

Ha, ha, ha! Other than that, great article, with enough detail to make the development understandable.

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...