Biological switch paves way for improved biofuel production

Jun 25, 2012
Cyanobacteria

(Phys.org) -- Scientists from Queen Mary, University of London have discovered a mechanism that controls the way that organisms breathe or photosynthesise, potentially paving the way for improved biofuel production.

Writing in the journal PNAS, Dr Lu-ning Lu and Professor Conrad Mullineaux from Queen Mary's School of Biological and Chemical Sciences report that by exposing cells to different light conditions, they have changed the way in which electrons are transported.

Professor Mullineaux explains: "Any organism that breathes or photosynthesises depends on tiny operating within . We are trying to find out what controls these circuits: what makes the electrons take the routes that they do, and what switches are available to send the electrons to other destinations?"

Cyanobacteria are a kind of bacterium that both breathes and photosynthesises and therefore has a complicated set of different possible pathways.

The team put specific fluorescent tags on some of the involved in electron transport, and then viewed the live cells with a to see where those complexes are in the cell.

By studying the cells in this way, the team visualised a biological electrical switch in action. When they changed the conditions (for example by making the light brighter or dimmer), the cell responded by changing the position of the complexes, which leads to major changes in the pathways of electron transport.

Full understanding of these mechanisms could help with re-engineering of cyanobacteria for improved solar-powered biofuel production, for example.

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

Related Stories

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Genome-scale model of cyanobacterium developed

Apr 11, 2012

(Phys.org) -- In an important step toward engineering bacteria to produce biofuel, scientists have developed one of the first global models for the nitrogen-fixing photosynthetic cyanobacterium Cyanothece ...

Discovering the secret code behind photosynthesis

Feb 25, 2009

(PhysOrg.com) -- Scientists from Queen Mary, University of London have discovered that an ancient system of communication found in primitive bacteria, may also explain how plants and algae control the process of photosynthesis.

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.