Tracking a Jurassic reversal of the Earth's magnetic field

May 17, 2012

Roughly 180 million years ago, during the height of the Jurassic period, the Earth's magnetic field flipped, bringing the magnetic north pole once again into the Northern Hemisphere.

This so-called van Zijl reversal, named for the researcher who first described it, is the second-oldest well-documented geomagnetic reversal. Such of the Earth's , which tend to take place over about 10,000 years, and possibly much less, have been identified as occurring up to several billion, and as recently as 780,000, years ago. An open question exists about the effect of such reversals on the properties of the Earth's magnetic field, including the structure it takes, and the consequent effects on its shape, size, and strength. Drawing on newly identified records of the van Zijl reversal, Moulin et al. describe the serpentine travels of the transitional magnetic pole and the variable strength of the paleomagnetic field.

Analyzing the orientations of magnetic minerals found encased within drawn from an ancient lava field in Lesotho, a small country encompassed within South Africa, and from another field in South Africa itself, the authors tracked the shifting geographic location of the ancient magnetic pole. They find that over a short period, possibly only a few centuries, the pole leapt from a location oriented around 45 degrees south to one near 45 degrees north. The paleomagnetic pole then drifted through around 20 degrees latitude as it moved to the southeast. Finally, the pole moved to a stable location centered near the geographic north pole. The authors find that leading up to the magnetic reversal, the strength of the magnetic field weakened to roughly 10 - 20 percent of its normal value, a depression that only decayed once the pole's location stabilized.

Explore further: Better forecasts for sea ice under climate change

More information: The "van Zijl" Jurassic geomagnetic reversal revisited, Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003910 , 2012

add to favorites email to friend print save as pdf

Related Stories

Lava flows reveal clues to magnetic field reversals

Sep 25, 2008

(PhysOrg.com) -- Ancient lava flows are guiding a better understanding of what generates and controls the Earth's magnetic field — and what may drive it to occasionally reverse direction.

Evidence of second fast north-south pole flip found

Sep 06, 2010

(PhysOrg.com) -- The Earth's magnetic poles flip around every 200,000 years or so, with north becoming south and vice versa. Normally, the process takes 4-5,000 years and it ought to be impossible for the ...

Recommended for you

Better forecasts for sea ice under climate change

2 hours ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

"Ferrari of space' yields best map of ocean currents

11 hours ago

A satellite dubbed the "Ferrari of space" has yielded the most accurate model of ocean circulation yet, boosting understanding of the seas and a key impact of global warming, scientists said Tuesday.

Researcher studies deformation of tectonic plates

13 hours ago

Sean Bemis put his hands together side by side to demonstrate two plates of the earth's crust with a smooth boundary running between them. But that boundary is not always smooth and those plates do not always ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.