Thermally stable solar cell materials

May 4, 2012 by Jonathan Scragg

( -- European researchers have developed a simple thermodynamic method to predict whether a substance can resist the high temperatures normally involved in the production of thin films for photovoltaic devices. The new approach could help scientists in their search for better energy materials. Jonathan Scragg of Uppsala University, Sweden, and his colleagues of the University of Bath, UK, and the University of Luxembourg present their results in ChemPhysChem.

"There are many things to consider when looking for the ideal material in a solar cell", Scragg says. "It must be very effective in converting light into electricity, should not contain any rare, expensive or dangerous raw materials, and must be easy to manufacture with high quality". However, most of the existing non-silicon inorganic thin-film solar cell technologies are based on either toxic substances, such as (CdTe), or relatively rare substances, such as copper indium selenide (CIGSe). Many researchers worldwide are therefore searching for alternative materials to overcome these limitations. "We are faced with a huge problem", Scragg says. "Nature has provided such a large number of different materials that it is impossible to test every single one. We describe a method that can vastly simplify this problem".

During the manufacturing process, solar cell materials must be heated to high temperatures—in a step called annealing—so that they can crystallize with the required quality. However, many materials cannot tolerate these high temperatures without breaking down, which makes them fundamentally unsuitable. Scragg and co-workers have now found a way to determine beforehand whether a substance will be able to resist the high temperatures encountered in the manufacturing process or not. They predicted the reactions taking place during the thermal treatment of layers of several multinary semiconductor compounds on different substrates and demonstrated that the annealing conditions can be controlled to maximize the stability and quality of the materials.

The scientists studied different substances, such as CIGSe, copper zinc tin selenide (CZTSe), and other less-known ternary and quaternary semiconductors. Scragg believes that the new approach will be of great help in the search for better absorber materials: "There are many alternative materials out there, some of which are very promising and some of which may never meet the demands of the solar cell. Few of these alternatives ever receive the time and resources required to develop them to a high enough level. Instead of focusing on one single material, we take a broader approach, providing a method to determine which materials are potentially useful, and which have fundamental limitations", he says.

Explore further: Cheaper materials could be key to low-cost solar cells

Related Stories

Cheaper materials could be key to low-cost solar cells

February 18, 2009

( -- Unconventional solar cell materials that are as abundant but much less costly than silicon and other semiconductors in use today could substantially reduce the cost of solar photovoltaics, according to a ...

Organic 2-D films could lead to better solar cells

April 12, 2011

( -- Solar cells made from organic materials are inexpensive, lightweight and flexible, but their performance lags behind cells that contain silicon or other inorganic materials. Cornell chemist William Dichtel ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.