Researchers plan to double biofuel yield from a non-food oil seed crop

May 08, 2012

One of the most promising avenues for reducing our national dependence on imported oil, lowering greenhouse gases and boosting domestic fuel production is biofuel from non-food plant seed oils. Recently, a University of Massachusetts Amherst team started a $2 million project to develop Camelina, a non-food oil seed crop related to canola, to dramatically increase seed oil generation for processing into sustainable liquid transportation fuels.

Plant oils can directly convert to biofuels with existing technologies, are compatible with current farm practices and are carbon neutral. As team leader and biochemist Danny Schnell says, "Our goals are to double the current maximum seed and fuel yield from Camelina while requiring less than 1 million acres to achieve the 100 million gallons per year target for ." Camelina is an attractive candidate species, he adds, because it will grow in poor soil and not compete with . It is also drought tolerant, has a short growing season and requires little fertilizer.

Boosting yield to develop commercial biofuels will require increasing their relatively low yield, say Schnell and colleagues. As experts in , microbial photosynthesis and chemistry, they plan to genetically engineer Camelina chloroplasts, where photosynthesis takes place, to increase carbon photosynthesis capture and fixation rates. They also want to shift the plant toward producing less sugar and more seed oil and terpenes, the building blocks of liquid fuels.

"We’ll do this biochemically, following the plant’s natural pathways to increase efficiency and divert energy to produce more seed oil, which the plant already makes to nourish its seeds" Schnell says, "We hope to increase the ratio of oil in the seeds from 40 to 80 percent, increase the number of seeds produced, or a combination of the two."

This metabolic approach will also help Schnell and colleagues Jennifer Normanly, a molecular biologist, plus microbiologist Jeff Blanchard and plant physiologists Michele Dacosta and Om Parkash, to engineer Camelina to produce more terpenes, chemicals like lemon oil that many plants make to repel insects. Terpenes are of industrial interest as a precursor to many chemicals, from drugs to plastics.

Schnell says the photosynthesis process that plants use to fix carbon to make sugar is quite inefficient because the enzyme that regulates the first step, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), fixes not only carbon dioxide (CO2) but oxygen (O2), a "dead-end reaction," he points out. The UMass Amherst team strategy will be to take advantage of systems evolved by photosynthetic cyanobacteria and algae to out-compete oxygen, introducing them into Camelina. These organisms can pump CO2 directly to RuBisCo to increase carbon fixation and generate more biomass.

By altering genes in Camelina’s chloroplasts rather than in the nucleus, the researchers will avoid passing genetic modifications to the next plant generation. "Changes are not passed down through pollen to new plants, which eliminates the risk for genetic drift," Schnell says. "The pollen produced by these plants will be normal, not genetically modified." The work will be done at UMass Amherst’s new Bowditch greenhouses, which can isolate transgenic organisms.

Schnell and colleagues acknowledge that they’ll be creating a genetically modified organism, but it is a self-pollinator, so it doesn’t release pollen widely to reproduce. "Any crop that we produce will undergo very strict regulatory approval by EPA, FDA and USDA," says Schnell. "Unlike other genetic modifications that alter the plant’s genome, our method will just enhance what the plant already does. With the metabolic pathways, genetic drift is not a concern."

In Phase I of the two-phase project, the team hopes by mid-2013 to demonstrate in the coming 18 months that their approach will work and to identify which techniques are most promising in about 500 plants. "We’ll grow several generations and assess the efficiency of carbon fixation and production in intact live plants, harvest seeds and see how they do in increasing carbon fixation. If these methods prove effective, they could also be applied to other crops," says Schnell.

Phase I work is supported by a grant of just over $1.48 million from the U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) program, with the rest from UMass Amherst, the Massachusetts Clean Energy Council and academic partners at Washington State University, University of California, Berkeley, and Metabolics, Inc., of Cambridge.

At UMass Amherst the project is managed by The Institute for Massachusetts Biofuels Research (TIMBR), representing 35 faculty researchers in 10 academic departments. TIMBR manager Jim Demary says the institute is attractive to funding agencies because it demonstrates that UMass Amherst has an established interdisciplinary structure already in place and featuring key collaborations. "We’re very fortunate to have nationally recognized expertise at UMass Amherst," he says.

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

add to favorites email to friend print save as pdf

Related Stories

ARS researching camelina as a new biofuel crop

Apr 14, 2010

Agricultural Research Service (ARS) scientists have long-term studies under way to examine growing camelina as a bioenergy crop for producing jet fuel for the military and the aviation industry. This research supports the ...

Engineered tobacco plants have more potential as a biofuel

Dec 31, 2009

Researchers from the Biotechnology Foundation Laboratories at Thomas Jefferson University have identified a way to increase the oil in tobacco plant leaves, which may be the next step in using the plants for biofuel. Their ...

Recommended for you

The origin of the language of life

4 hours ago

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Dug
not rated yet May 08, 2012
"requires little fertilizer" - relative to what? All commercial production of biomass at levels to significant enough to impact our energy needs require NPK and as such are also not carbon neutral. Some researchers have estimated that a global biofuel industry would consume four times the NPK as our food crops. (http://seekingalp...ofuels). NPK requires large amounts of petroleum products - natural gas and fuels for its production producing a negative carbon position for biofuels in any competent mass balance analysis. All biofuels that use NPK will ultimately compete with food crops and more so as time goes on and critical resources like peak phosphates exert greater and greater price pressure on fertilizer and resulting food prices. Unless we have a new paradigm for NPK production (non-petroleum and non-rock phosphate sources) in place, biofuel production only adds to our energy, food, and environmental problems.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.