A new generation of acoustic measurements

May 29, 2012
The new technique uses two laser beams that intersect at a point, producing an interference fringe pattern.

NPL scientists have made the first measurements of airborne acoustic free-field pressures using a laser technique based on photon correlation spectroscopy.

This optical directly measures particle velocities and realizes the acoustic pascal - the SI derived unit of pressure - and could potentially be used to calibrate microphones. It is being developed as part of a wider initiative to base future primary acoustic standards on optical methods.

The new technique uses two lasers that are set up so that their beams intersect at a point in space and produce an interference fringe pattern. When sound is produced by a source (such as a ), the scattered by particles in the air as they pass through the fringe pattern changes. This intensity change can be detected, and the acoustic free-field pressure calculated.

The current method for calibrating microphones relies on their reciprocal nature. Part of the process requires one to be used as a sound source and coupled to a second receiving microphone. This set-up, together with complex modelling of the acoustic coupling between the microphone sensitivities, eventually leads to an evaluation of the microphone sensitivity, which is then traceable to a number of dimensional and electrical quantities.

However, this method imposes limits on the types of microphone which can be calibrated, meaning that non-standard microphones and new technologies such as MEMS (microelectromechanical) sensors cannot be tested and calibrated. Optical techniques are the solution to this problem due to their ability to directly measure the pascal at a point within a sound field.

Research will continue at NPL on developing optical methods that are robust and accurate enough to one day become the primary measurement standards that support sound pressure measurements. The use of optical techniques and the improved calibration they offer may also help to accelerate the development of new microphone technologies and other acoustic devices.

This research was carried out under the National Measurement Office Acoustics and Ionising Radiation Program.

Explore further: Finding a Better Way to Quiet Noisy Environments

Related Stories

Finding a Better Way to Quiet Noisy Environments

April 5, 2006

Researchers at UCSD report in the April 4 issue of the Journal of Sound and Vibration a new mathematical algorithm designed to dramatically improve noise-cancellation technologies that are used to quiet everything from airplane ...

Acoustic cloaking device echoes advances in optical cloaking

August 15, 2011

Optical cloaking devices that enable light to gracefully slip around a solid object were once strictly in the realm of science fiction. Today they have emerged as an exciting area of study, at least on microscopic scales. ...

Seeing sound in a new light

November 24, 2011

The National Physical Laboratory Acoustics team has been investigating acoustic cavitation – the formation and implosion of micro cavities, or bubbles, in a liquid caused by the extreme pressure variations of high intensity ...

Quantum microphone captures extremely weak sound

February 6, 2012

(PhysOrg.com) -- Scientists from Chalmers have demonstrated a new kind of detector for sound at the level of quietness of quantum mechanics. The result offers prospects of a new class of quantum hybrid circuits that mix acoustic ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.