New technology sheds light on viruses

Apr 10, 2012 By Sandra Avant
ARS scientists are using surface-enhanced Raman scattering with gold nanoparticles to design tests for identifying viruses that cause West Nile fever and Rift Valley fever (RVF). RVF is spread by mosquitoes to humans and to sheep, cattle, and some other livestock in Africa and the Middle East. Credit: Keith Weller

(Phys.org) -- Diagnostic tests that rapidly detect disease-causing viruses in animals and humans are being developed by U.S. Department of Agriculture (USDA) scientists using a new technology called "surface-enhanced Raman scattering," or SERS.

With SERS, molecules give off their own unique signals or wavelengths that can be detected with a spectroscope. Viral molecules are labeled with a dye that makes them detectable when a laser is shone on them. Moving a metal such as gold or silver close to the labeled molecules greatly enhances the detection signal.

Microbiologist William Wilson at the Agricultural Research Service (ARS) Center for Grain and Animal Health Research in Manhattan, Kan., used this technology to identify viruses that can cause and , both of which are spread by infected mosquitoes. ARS is USDA's chief intramural scientific research agency.

Wilson and his collaborators at the University of Wyoming designed a nucleic acid diagnostic assay to bring molecules close to in solution. The gold nanoparticles boost the spectroscopic signal from the indicator molecule, making it easier to detect viral nucleic acid from infected cells. They also developed an immunoassay that rapidly detects to viruses.

Scientists hope to eventually adapt the assay to field-based bedside or pen-side diagnostic tools. For example, an instrument similar to a dipstick could be used to rapidly determine areas where a disease outbreak is occurring. Veterinarians could take blood samples from animals on farms, put the samples in small vials and read them with a hand-held device to determine if a virus is present.

Another advantage of the assay is that it can be used to test for multiple pathogens, whereas current pen-side tests are generally agent-specific. The sensitivity of the new diagnostic assay is also greater than the current pen-side system and potentially as good as widely used polymerase chain reaction-based tests.

Findings from this research were published in Biosensors and Bioelectronics and Analytical Chemistry.

Explore further: MRI sensor that enables long-term monitoring of oxygen levels could aid cancer diagnosis, treatment

More information: Read more about this research in the April 2012 issue of Agricultural Research magazine.

Provided by USDA Agricultural Research Service

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

High-tech tactic may expose stealthy salmonella

Apr 10, 2012

Even the smallest quantity of Salmonella may, in the future, be easily detected with a technology known as SERS, short for "surface-enhanced Raman scattering." U.S. Department of Agriculture (USDA) scientist ...

Researchers use gold nanoparticles to diagnose flu in minutes

Aug 04, 2011

Arriving at a rapid and accurate diagnosis is critical during flu outbreaks, but until now, physicians and public health officials have had to choose between a highly accurate yet time-consuming test or a rapid but error-prone ...

Triplex assay used to assay duplex genomic DNA

Mar 21, 2007

Direct detection of base sequence in duplex nucleic acid has long been an unfulfilled objective. Ingeneus Research will publish "Heteropolymeric Triplex-Based Genomic Assay® to Detect Pathogens or Single-Nucleotide Polymorphisms ...

Biosensors: Sweet and simple

Apr 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by ...

Recommended for you

Mantis shrimp stronger than airplanes

13 hours ago

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

The anti-inflammatory factory

19 hours ago

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

New mineral shows nature's infinite variability

19 hours ago

(Phys.org) —A University of Adelaide mineralogy researcher has discovered a new mineral that is unique in structure and composition among the world's 4,000 known mineral species.

User comments : 0

More news stories

Mantis shrimp stronger than airplanes

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

The anti-inflammatory factory

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

Volitional control from optical signals

(Medical Xpress)—In their quest to build better BMIs, or brain-machine-interfaces, researchers have recently begun to look closer at the sub-threshold activity of neurons. The reason for this trend is that ...