New technology sheds light on viruses

Apr 10, 2012 By Sandra Avant
ARS scientists are using surface-enhanced Raman scattering with gold nanoparticles to design tests for identifying viruses that cause West Nile fever and Rift Valley fever (RVF). RVF is spread by mosquitoes to humans and to sheep, cattle, and some other livestock in Africa and the Middle East. Credit: Keith Weller

(Phys.org) -- Diagnostic tests that rapidly detect disease-causing viruses in animals and humans are being developed by U.S. Department of Agriculture (USDA) scientists using a new technology called "surface-enhanced Raman scattering," or SERS.

With SERS, molecules give off their own unique signals or wavelengths that can be detected with a spectroscope. Viral molecules are labeled with a dye that makes them detectable when a laser is shone on them. Moving a metal such as gold or silver close to the labeled molecules greatly enhances the detection signal.

Microbiologist William Wilson at the Agricultural Research Service (ARS) Center for Grain and Animal Health Research in Manhattan, Kan., used this technology to identify viruses that can cause and , both of which are spread by infected mosquitoes. ARS is USDA's chief intramural scientific research agency.

Wilson and his collaborators at the University of Wyoming designed a nucleic acid diagnostic assay to bring molecules close to in solution. The gold nanoparticles boost the spectroscopic signal from the indicator molecule, making it easier to detect viral nucleic acid from infected cells. They also developed an immunoassay that rapidly detects to viruses.

Scientists hope to eventually adapt the assay to field-based bedside or pen-side diagnostic tools. For example, an instrument similar to a dipstick could be used to rapidly determine areas where a disease outbreak is occurring. Veterinarians could take blood samples from animals on farms, put the samples in small vials and read them with a hand-held device to determine if a virus is present.

Another advantage of the assay is that it can be used to test for multiple pathogens, whereas current pen-side tests are generally agent-specific. The sensitivity of the new diagnostic assay is also greater than the current pen-side system and potentially as good as widely used polymerase chain reaction-based tests.

Findings from this research were published in Biosensors and Bioelectronics and Analytical Chemistry.

Explore further: A refined approach to proteins at low resolution

More information: Read more about this research in the April 2012 issue of Agricultural Research magazine.

Provided by USDA Agricultural Research Service

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

High-tech tactic may expose stealthy salmonella

Apr 10, 2012

Even the smallest quantity of Salmonella may, in the future, be easily detected with a technology known as SERS, short for "surface-enhanced Raman scattering." U.S. Department of Agriculture (USDA) scientist ...

Researchers use gold nanoparticles to diagnose flu in minutes

Aug 04, 2011

Arriving at a rapid and accurate diagnosis is critical during flu outbreaks, but until now, physicians and public health officials have had to choose between a highly accurate yet time-consuming test or a rapid but error-prone ...

Triplex assay used to assay duplex genomic DNA

Mar 21, 2007

Direct detection of base sequence in duplex nucleic acid has long been an unfulfilled objective. Ingeneus Research will publish "Heteropolymeric Triplex-Based Genomic Assay® to Detect Pathogens or Single-Nucleotide Polymorphisms ...

Biosensors: Sweet and simple

Apr 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0