Salmonella infection, but not as we know it

Apr 25, 2012

Researchers at Cambridge University have shed new light on a common food poisoning bug. Using real-time video microscopy, coupled with mathematical modelling, they have changed our assumptions about Salmonella and how it infects human cells. The research was published in Interface.

Salmonella is an important to study as it causes a range of diseases in humans and animals. It is capable of growing and reproducing inside - a type of white blood cell that ingests foreign material - ultimately destroying them. These macrophage cells are key players in the to invaders and so the control of Salmonella within these cells is critical to surviving an infection. However, fundamentally important factors in infection events - such as the rate at which Salmonella infects cells, how frequently this occurs and the probability of infection - had not previously been calculated because it was thought impossible to do so.

Dr Bryant, from the University of Cambridge, said: "Understanding how these bacteria invade, survive, proliferate and kill vital provides a wealth of knowledge to help improve our health. For the first time, we have been able to calculate the rate at which Salmonella can infect macrophages and we have also seen evidence of dual infection and reinfection of a single cell."

Instead of relying on figures from large populations of infected cells, such as changes in total bacterial number over time, finer measurements of the individual steps of infection were considered. The researchers used two independent approaches for their calculations: of experiments, and analysis of real-time video microscopy of individual infection events.

Their research found that many incorrect assumptions had been made about Salmonella infection, particularly that macrophages are highly susceptible to infection. Their data showed that infection occurrences after initial contact between a bacterium and macrophage were low. The probability of that bacterium infecting the cell is less than 5 per cent. However, they also showed that an infected macrophage can be reinfected by a second bacterium. The concept of reinfection by Salmonella had not been considered before and this previously overlooked mechanism may make an important contribution to total bacterial numbers in infection studies.

The study also highlighted the fact that some cells are far more susceptible to infection than others. Rather than grouping all macrophages together in terms of their susceptibility to infection, the research shows that there is a spectrum of susceptibility.

"Our research revealed novel biological processes that occur when Salmonella interacts with macrophages. It will lead to a reconsideration of the mechanisms behind infection which will be important for the future development of intervention strategies," added Dr Bryant.

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Iron regulates the TLR4 inflammatory signaling pathway

Oct 05, 2009

Iron is a micronutrient essential to the survival of both humans and disease-causing microbes. Changes in iron levels therefore affect the severity of infectious diseases. For example, individuals with mutations in their ...

Snakes poisoned at birth

Feb 23, 2006

Scientists in Germany have found that a significant route of transmission of Salmonella in non egg-laying snakes is from the mother to the offspring during pregnancy and birth.

An Infectious Agent of Deception, Exposed Through Proteomics

Sep 29, 2006

Salmonella bacteria, infamous for food poisoning that kills hundreds of thousands worldwide, infect by stealth. They slip unnoticed into and multiply inside macrophages, the very immune system cells the body relies on to ...

Arctic evolution leads to salmonella vaccine

Mar 05, 2012

Bacteria harvested from the frigid waters of the Arctic could be the key to a new type of temperature-sensitive vaccine. University of Victoria microbiology researcher Dr. Francis Nano has received Genome BC Proof-of-Concept ...

Recommended for you

How plant cell compartments change with cell growth

6 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

6 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

7 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

7 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0