Metal oxides hold the key to cheap, green energy

Apr 19, 2012
Metal oxides hold the key to cheap, green energy
Louis Piper, assistant professor of physics at Binghamton University, is harnessing the energy of sunlight by tuning the optical and electronic properties of metal oxides. Credit: Jonathan Cohen/Binghamton University

Harnessing the energy of sunlight can be as simple as tuning the optical and electronic properties of metal oxides at the atomic level by making an artificial crystal or super-lattice 'sandwich' says a Binghamton University researcher in a new study published in the journal Physical Review B.

"Metal oxides are cheap, abundant and 'green,'" said Louis Piper, assistant professor of physics at Binghamton University. "And as the study proved, quite versatile. With the right touch, metal oxides can be tailored to meet all sorts of needs, which is good news for technological applications, specifically in and flat screen displays."

Here's how it works: semiconductors are an important class of materials in between metals and . They are defined by the size of their band gap, which represents the energy required to excite an electron from the occupied shell to an unoccupied shell where it can conduct electricity. covers a range of 1 (infrared) to 3 (ultraviolet) electron volts. For transparent , a large band gap is required, whereas for , a band gap corresponding to green light is needed. Metal oxides provide a means of tailoring the band gap.

But while metal oxides are very good at electron conduction, they are very poor "hole" conductors. Holes refer to absence of electrons, and can conduct positive charge. To maximize their technologically potential, especially for artificial photosynthesis and invisible electronics, hole conducting metal oxides are required.

Knowing this, Piper has begun studying layered metal oxides systems, which can be combined to selectively 'dope' (replace a small number of one type of atom in the material), or 'tune' (control the size of the band gap). Recent work revealed that a super-lattice of two hole-conducting copper oxides could cover the entire . The goal is to improve the performance whilst using environmentally benign and cheap metal alternatives.

For instance, indium oxide is one of the most widely used oxides used in the production of coatings for flat screen displays and solar cells. It can conduct really well and is transparent. But it is also rare and very expensive. Piper's current research is aimed towards using much cheaper tin oxide layers to get electron and hole conduction with optical transparency.

But according to Piper, his research shows that one glove will not fit all purposes.

"It's going to be a case of some serious detective work," said Piper. "We're working in a world where physics and chemistry overlap. And we've reached the theoretical limit of our calculations and fundamental processes. Now we need to audit those calculations and see where we're missing things. I believe we will find those missing pieces by playing around with metal oxides."

By reinforcing metal oxides' 'good bits' and downplaying the rough spots, Piper is convinced that the development of new and exciting types of metal oxides that can be tailored for specific applications are well within our reach.

"We're talking battery storage, fuel cells, touch screen technology and all types of computer switches," said Piper. "We're in the middle of a very important gold rush and its very exciting to be part of that race to strike it rich. But first we have to figure out what we don't know before we can figure out what we do. One thing's for sure: hold the key. And I believe that we at Binghamton University can contribute to these efforts by doing good science and taking a morally conscious approach."

Explore further: Nanomaterials to preserve ancient works of art

Related Stories

ORNL finding has materials scientists entering new territory

Feb 21, 2012

Solar cells, light emitting diodes, displays and other electronic devices could get a bump in performance because of a discovery at the Department of Energy's Oak Ridge National Laboratory that establishes new boundaries ...

'Impossible' conductivity explained

May 19, 2010

(PhysOrg.com) -- Bring two materials that are not themselves conductive into contact and, exactly at their interface, something remarkable happens: at that precise point, conduction is possible.

Metal oxide simulations could help green technology

Jan 10, 2012

(PhysOrg.com) -- University of California, Davis, researchers have proposed a radical new way of thinking about the chemical reactions between water and metal oxides, the most common minerals on Earth. Their work appears ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

12 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.