Researchers discover new method of making nanoparticles

March 6, 2012

(PhysOrg.com) -- An engineering researcher at the University of Arkansas and his colleagues at the University of Utah have discovered a new method of making nanoparticles and nanofilms to be used in developing better electronic devices, biosensors and certain types of high-powered and highly specific microscopes used for scientific research.

The never-ending quest to build faster, more efficient and more reliable starts deep down below the molecular level, where – far too small for the human eye to detect – make up the building blocks of the latest processing hardware. In pursuit of this goal, scientists and engineers are constantly investigating new materials and better methods of developing or assembling these materials.

The researchers’ nanoparticles, made of gold and deposited onto silicon substrates by a unique chemical process, are nontoxic and inexpensive to make and have superior dimensions, densities and distribution when compared to other nanoparticles and conventional methods of producing nanoparticles. The unique deposition technique has the further advantage of being able to rapidly coat fragile, three-dimensional and internal surfaces at the temperature and pressure of its surroundings without requiring conductive substrates or expensive, sophisticated equipment.

“Using successive thermal treatments, we characterized optical and structural features of an inexpensive, molecule-to-molecule, bottoms-up approach to create thermally stable, gold-nanoparticle ensembles on silica,” said Keith Roper, associate professor of chemical engineering at the University of Arkansas. “Images and analysis from scanning electron microscopy and atomic force microscopy revealed that particle densities are the highest reported to date. Our method also allows faster preparation than self-assembly or lithography and allows directed assembly of nanoparticle ensembles on 3D surfaces.”

The researchers’ unique approach improves upon a method that involves depositing atoms from a solution onto a substrate with a tin-sensitized surface. The researchers use a novel continuous-deposition process and then heat these deposited atoms to transform “islands” of nanoparticle material into desired forms. The resulting spherical nanoparticles can have diameters between 5 and about 300 nanometers. A nanometer is a billionth of a meter. A human hair typically has a diameter of 70,000 nanometers.

Roper said that microscopic images and spectroscopic data suggest that ultrathin films prepared by their new approach are smoother than conventional “sputtered” or evaporated gold films and may exhibit better optical features, such as reduced surface-roughness scattering. These features are desirable in devices such as photovoltaic cells in which narrow metal layers significantly affect local electromagnetic fields. Smoother thin films also could improve the limits of detection, sensitivity and photocurrent, respectively, in such applications.

The researchers’ recent studies in this area have been published in Langmuir and Journal of Physical Chemistry C, journals of the American Chemical Society. The researchers were awarded U.S. Patent No. 8,097,295 on Jan. 17 for the development.

Explore further: 'Spincasting' holds promise for creation of nanoparticle thin films

Related Stories

Ink with tin nanoparticles could print future circuit boards

April 12, 2011

(PhysOrg.com) -- Almost all electronic devices contain printed circuit boards, which are patterned with an intricate copper design that guides electricity to make the devices functional. In a new study, researchers have taken ...

New technique maps twin faces of smallest Janus nanoparticles

September 26, 2011

(PhysOrg.com) -- New drug delivery systems, solar cells, industrial catalysts and video displays are among the potential applications of special particles that possess two chemically distinct sides. These particles are named ...

Nanoparticle imaging: A resonant improvement

October 28, 2011

Raman spectroscopy is a powerful technique for analyzing atomic structure based on the inelastic scatter of light from molecules, with diverse applications including medical imaging and chemical sensing. Researchers have ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.