Flexible paper robots

Feb 09, 2012
Flexible paper robots
Machines based on paper and driven by air have been created by scientists at Harvard University

(PhysOrg.com) -- These inexpensive robots can stretch, bend and twist under control, and lift objects up to 120 times their own weight. Being soft, they can apply gentle and even pressure, and adapt to varied surfaces.

The fact that can bend but not stretch is the key to this remarkable invention, published today in the journal . Led by Prof. George Whitesides, the researchers have encased a paper sheet in an air-tight derived from silicones, sometimes called rubbers. On one side of the paper, the silicone is laced with tiny air channels. As air is pumped into the channels (termed PneuNets), the rubbery material on that side expands, forcing the paper to bend. Postdoctoral researcher Ramses Martinez likens the structures to , “When the balloon part of the structure expands it doesn’t become round (as does a child’s balloon), but adopts more complex shapes in response to the constraints imposed by the paper sheets.”

Indeed, quite complicated shapes and movements can be created by simply altering the pattern of channels and by folding the paper in a process the researchers liken to origami. “The methods we developed are astonishingly simple for the complex motions that they generate. Once we understood the materials to use, the best procedures for fabrication and the kinds of designs that worked best.”

Actuators are what scientists call devices that move or change shape in response to some input and are the moving parts of robots. In their Adv. Funct. Mater. paper, the researchers given examples of contracting actuators (the video below shows a worm-like one, but some resembling paper lanterns are also demonstrated), elongating actuators, and pleated bellows. One bellows only 8.2 grams itself is shown to lift a 1 kilogram weight – as shown in the image (see an image below). Restricting movement further by gluing folds or fastening them together with paper strips can cause the shapes to turn corners or twist as they expand. The scientists drew inspiration from the motions of starfish, worms and squid, but used pneumatics and compressed air rather than muscles.

This video is not supported by your browser at this time.

The publication discusses the use of polyester/cellulose paper and a tough siloxane elastomer called Ecoflex®, but Prof. Whitesides and his group have also used materials such as cotton cloth, fiber, and nylon or metallic mesh as the non-stretching base. The production is simple: a mold is used to create pneumatic channels in the elastomer, which is then bonded to elastomer-soaked paper. Compressed air is pumped into the channels through a small valve. Alternatively, for bellows-type operation, a pleated cylinder of paper is soaked in elastomer, the cylinder is capped, and air is pumped into the centre of the cylinder. A strip of elastomer linking the caps ensures the paper returns fully to its original shape and size on the removal of air.

Flexible paper robots
Origami extension actuator lifting a standard weight of 1 kg. Image: Wiley

The work combines Prof. Whitesides’ previous experience of “squishy” robots using silicon-based materials and pneumatic activation with his development of paper as a support for tiny, low-cost, ‘microfluidic’ analytical devices.

Dr. Martinez is enthusiastic about the future for the paper robots, “We hope these structures can be developed into assistants for humans. Unlike the types of (machines) robots used in assembly lines (which are designed to be very strong and fast, but they are also very dangerous for humans to be around when they are operating), these actuators can be more ‘human-friendly’. They might, thus, provide ‘extra fingers or hands’ for surgeons, or handle easily damaged structures, such as eggs or fruit.” Use in disaster relief, where ability for machines to navigate complex pathways would be advantageous, is also envisaged. By adding such things as light sources, or metal wires to allow electrical conductivity, potential applications are considerably broadened.

The scientists wish to acknowledge support in part by The Defence Advanced Research Projects Agency (DARPA) and the US Department of Energy.

Explore further: Novel microscopy pencils patterns in polymers at the nanoscale

More information: R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, “Elastomeric Origami: Programmable Paper–Elastomer Composites as Pneumatic Actuators”, Adv. Funct. Mater. 2012, Vol. 13, DOI: adfm.201202978

Related Stories

Soft grip: Pneumatic elastomers as robotic arms

Jan 21, 2011

(PhysOrg.com) -- It looks like a starfish made of soft plastic. When air is blown into it through a thin tube it comes to life and the starfish closes like a hand. It does this so gently that it can grasp ...

A touchscreen you can really feel (w/ video)

Nov 16, 2011

(PhysOrg.com) -- Swiss researchers have invented a new generation of tactile surfaces with relief effects – users can feel actual raised keys under their fingers. This technology could have many applications, particularly ...

Computer-generated robots

Nov 29, 2010

'Genetic Robots' are moving robots that can be created fully automatically. The robot structures are created using genetic software algorithms and additive manufacturing. At the Euromold trade fair in Frankfurt, ...

Physicists grow micro-machines from carbon

Mar 09, 2011

(PhysOrg.com) -- A Brigham Young University physics student and his professor had some fun with their new method of growing tiny machines from carbon molecules.

When robots learn from our mistakes

May 26, 2011

(PhysOrg.com) -- Robots typically acquire new capacities by imitation. Now, EPFL scientists are doing the inverse -- developing machines that can learn more rapidly and outperform humans by starting from failed ...

Recommended for you

A renewable bioplastic made from squid proteins

3 hours ago

In the central Northern Pacific is an area that may be the size of Texas called the Great Pacific Garbage Patch. Made up of tons of floating plastic debris, the patch is killing seabirds and poisoning marine ...

Self-repairing subsea material

Dec 16, 2014

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
1 / 5 (2) Feb 09, 2012
I'm not sure if this is a great idea or an awful idea.

When the robot apocalypse comes, - and it will - having a bunch of paper robots killing us to death by a thousand paper cuts could be absolutely terrible.

OTOH, you could mow through them with a flame thrower like rambo.
NeptuneAD
3 / 5 (2) Feb 09, 2012
News Flash: CIA accused of secret paper cut torture camps.
Eoprime
not rated yet Feb 10, 2012
The whole: "pneumatic tubes in elastomere" thing is really old,
Yes they used paper to limit the movement, but the concept is already established, dont know why this should be considered 'new' or inventive...
tadchem
not rated yet Feb 10, 2012
I've always been partial to silk as a tough, non-stretching fabric. Using plastic tubes (soda straws) as armatures it makes the best kites.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.