Ulcer-causing bacteria baffled by mucus: Viscoelasticity impact on collective behavior of swimming microorganisms

Jan 18, 2012
Researchers at Rensselaer Polytechnic Institute have discovered how certain polymers -- like those found in human mucus and saliva -- make it significantly more difficult for ulcer-causing bacteria to coordinate. The findings raise many new questions about the relationship between the individual and group behaviors of bacteria. The study also suggests that human mucus, saliva, and other biological fluid barriers may have evolved to disrupt the ability of harmful bacteria to coordinate. Credit: Rensselaer/Underhill

Even the tiniest microscopic organisms make waves when they swim. In fact, dealing with these waves is a fact of life for the ulcer-causing bacteria H. pylori.

The bacteria are known to change their behavior in order to compensate for the created by other bacteria swimming around in the same aquatic neighborhood. From the relatively simple actions of these individual bacteria emerges a complex, coordinated .

A new study by engineering researchers at Rensselaer Polytechnic Institute demonstrates how introducing certain polymers—like those found in human mucus and saliva—into the environment makes it significantly more difficult for H. pylori and other microorganisms to coordinate. The findings raise many new questions about the relationship between the individual and group behaviors of bacteria. The study also suggests that human mucus, saliva, and other biological fluid barriers may have evolved to disrupt the ability of harmful bacteria to coordinate.

"In the human body, microorganisms are always moving around in mucus, saliva, and other systems that exhibit elasticity due to the presence of polymers. Our study is among the first to look at how this elasticity impacts the collective behavior of microorganisms like H. pylori," said lead researcher Patrick T. Underhill, assistant professor in the Howard P. Isermann Department of Chemical and Biological Engineering at Rensselaer. "What we found is that polymers do in fact have a substantial impact on the flows created by the swimming bacteria, which in turn makes it more difficult for the individual bacteria to coordinate with each other. This opens the door to new ways of looking at our immune system."

Results of the study are detailed in the paper "Effect of viscoelasticity on the collective behavior of swimming microorganisms," recently published by the journal .

Underhill's study, based on large-scale computer simulations, leveraged the power of the Rensselaer Computational Center for Nanotechnology Innovations (CCNI), one of the world's most powerful university-based supercomputers. These simulations involved creating a computer model of more than 110,000 individual H. pylori bacteria simultaneously occupying a small volume of polymer-infused liquid. The simulations captured all of the individual actions and interactions created as the bacteria swam through the liquid. The most difficult aspect of this kind of simulation, Underhill said, is to identify collective behaviors and extract relevant conclusions from the massive amount of data generated.

See a video of a simulation:

This video is not supported by your browser at this time.

In addition to computer simulations, Underhill employed theoretical models to understand how the addition of elasticity to liquid impacts the waves created by swimming H. pylori and, in turn, the of a large group of the bacteria. like H. pylori are known as pushers, as they propel themselves through water by twisting the long helical filaments that trail behind them.

Explore further: Physicists use magnetism simulation software to model US presidential elections

More information: See the paper online at: http://link.aps.org/doi/10.1103/PhysRevE.84.061901

Related Stories

The pros and cons of Helicobacter pylori

Dec 27, 2011

(Medical Xpress) -- The debate over the bacteria Helicobacter pylori continues as a new study published in Clinical Infectious Diseases shows that people carrying H. pylori have a reduced risk of diarrhea from other bacterial ...

Stomach ulcer bug causes bad breath

Nov 24, 2008

Bacteria that cause stomach ulcers and cancer could also be giving us bad breath, according to research published in the December issue of the Journal of Medical Microbiology. For the first time, scientists have found Helico ...

Going from ulcers to cancer

Aug 22, 2008

Researchers have uncovered a big clue as to why some of the bacteria that cause stomach ulcers pose a greater risk for serious problems like stomach cancer than others; it turns out these bacteria can exploit the surrounding ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

6 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

10 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

Apr 23, 2014

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

irjsiq
not rated yet Jan 18, 2012
From the relatively simple actions of these individual bacteria emerges a complex, coordinated group behavior.[q/]
Do these 'coordinated group behavior(s) not infer 'thought'?

Roy J Stewart,
Phoenix AZ

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...