Titanium dioxide film enhances the sun's natural disinfection power

Jan 12, 2012

The world population is estimated to be seven billion and all these mouths need feeding. With fears about overfishing and the sustainability of fish stocks in our seas fish farming is becoming big business. As with all farming there are issues about maintaining the health of stock and how to prevent bacterial infection. New research published in BioMed Central's open access journal BMC Microbiology demonstrates that a prototype water purification reactor containing a thin film of titanium dioxide (TiO2) is able to enhance the sun's natural disinfection properties This device could reduce the need for expensive antibiotics or poisonous chemicals.

Outbreaks of infectious diseases by bacteria and other can cause substantial losses of stock in aquaculture. While antibiotics, biocides and conventional disinfectants can be used, they are expensive and leave behind chemical residues. Using sunlight for disinfection is not a new idea however conventional solar disinfection is slow and inefficient.

Researchers from CQUniversity, Australia, addressed this problem by adapting thin-film fixed-bed reactor (TTFBR) technology to provide treated water. In the reactor water contaminated by Aeromonas hydrophila was slowly passed over a sloping film of TiO2 at a fixed rate and in full sunlight. Results showed that using TiO2 as a increased the effectiveness of solar disinfection by over 10 times.

Prof Rob Reed, one of the team who performed this work explained, "Other people have looked at using TiO2 as an enhancer of solar disinfection, but they either used a suspension of TiO2 particles in water, or artificial UV to test their reactors. Our TTFBR technology is very effective at killing pathogens at high levels of natural sunlight and consequently is particularly suited to countries with sunny climates and is especially useful to developing countries where sunlight is abundant but other resources are scarce."

Explore further: For cells, internal stress leads to unique shapes

add to favorites email to friend print save as pdf

Related Stories

Chemists examine solar energy and air purification

Jul 22, 2011

The abundant sunlight is no doubt making beachgoers happy this summer, but those working on their tans aren't the only beneficiaries. The sun's rays are also a key ingredient to going green.

Titanate cigarette filter could be safer

May 04, 2011

(PhysOrg.com) -- While current cigarettes are made with a filter created from cellulose acetate which absorbs things like nicotine, tar, and polycyclic aromatic hydrocarbons, Chinese researchers have discovered ...

Recommended for you

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

8 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.