PRINTed nanoparticles deliver multiple punches to treat prostate cancer

Jan 21, 2012

Using technologies common to the semiconductor industry, a team of investigators at the University of North Carolina at Chapel Hill and Liquidia Technologies has created a polymer nanoparticle that can encapsulate large loads of therapeutic molecules that may have use in treating prostate cancer. The research, led by Joseph DeSimone, co-principal investigator of the Carolina Center for Cancer Nanotechnology, was published in the journal Nano Letters.

Dr. DeSimone and his colleagues developed their nanoparticles to deliver () molecules to tumors. siRNAs block or greatly reduce a cell's production of specific proteins by binding to the (mRNA) molecules that translate information from DNA into proteins. Because of their specificity for specific proteins, siRNAs are thought to hold promise as anticancer agents, but only if techniques can be developed to deliver large quantities of siRNAs to tumor cells.

With an eye on commercialization, the Carolina team created an siRNA delivery vehicle using the PRINT process, which was invented in Dr. DeSimone's laboratory and is now being developed for biomedical applications by Liquidia Technologies. PRINT uses to mass produce polymeric nanoparticles under mild conditions suitable for use with biologically . In this project, the team created nanoparticles consisting of a polymer core that safely encapsulates siRNA molecules and a lipid shell that promotes cell uptake.

Initial tests with cells engineered to produce a fluorescent protein and a nanoparticle containing an siRNA agent that would block production of this protein, the investigators showed that these particles were readily taken up by the cells. Once inside the cells, the polymeric nanoparticles released their siRNA payload, blocking production of the fluorescent protein.

Next, the investigators created a nanoparticle containing an siRNA designed to interfere with the production of a protein known as KIF11, which plays a role in prostate tumor growth. They then dosed three different prostate cancer cell lines with this formulation and found that all three cell lines experienced a dramatic drop in KIF11 levels, which in turn triggered cell death in all three cell lines. The researchers note that they are now performing animal studies with PRINTed nanoparticles loaded with siRNAs targeted to key tumor proteins.

This work, which is detailed in a paper titled, "Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

Explore further: Physicists create new nanoparticle for cancer therapy

Related Stories

Pack 'Em In -- Gold Nanoparticles Improve Gene Regulation

Feb 23, 2009

Investigators at Northwestern University have found that packing small interfering RNA (siRNA) molecules onto the surface of a gold nanoparticle can protect siRNAs from degradation and increase their ability to regulate genes ...

Magnetic Nanoworms and Nanocrystals Deliver siRNA to Tumors

Sep 23, 2009

(PhysOrg.com) -- Small pieces of nucleic acid known as short interfering RNAs, or siRNAs, can turn off the production of specific proteins, a property that makes them one of the more promising new classes of anticancer drugs ...

Two-In-One Punch Knocks Out Drug Resistant Cancer Cells

Nov 04, 2009

(PhysOrg.com) -- Cancer cells, like bacteria, can develop resistance to drug therapy, leading to relapse of disease. One approach showing promise in overcoming multidrug resistance in tumors is to combine two different anticancer ...

Self-Assembling Nanoparticles Image Tumor Cells

Jul 23, 2007

By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that ...

Recommended for you

Thinnest feasible nano-membrane produced

14 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

17 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...