Graphene: Impressive capabilities on the horizon

Jan 24, 2012

The Air Force Office of Scientific Research (AFOSR), along with other funding agencies, helped a Rice University research team make graphene suitable for a variety of organic chemistry applications—especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Ever since the University of Manchester's Andre Geim and Konstantin Novoselov received the 2010 Nobel Prize in Physics for their groundbreaking graphene experiments, there has been an explosion of graphene related discoveries; but graphene experimentation had been ongoing for decades and many ultimate graphene associated breakthroughs were already well under way in various labs when the Nobel committee acknowledged the significance of this new wonder material.

And one such laboratory was Dr. James Tour's at Rice, whose team found a way to attach various organic molecules to sheets of graphene, making it suitable for a range of new applications. Starting with graphene's two-dimensional atomic scale honeycomb lattice of carbon atoms, the Rice team built upon previous graphene community discoveries to transform graphene's one sheet structure into a superlattice.

While carbon is a key part in most organic chemical reactions, graphene poses a problem in that it plays an inert role—not responding to organic chemical reactions. The Rice team solved this dilemma by treating graphene with hydrogen. This classic hydrogenation process restructured the graphene honeycomb lattice into a two-dimensional, semiconducting superlattice called graphane.

The hydrogenation process can then be tailored to make particular patterns in the superlattice to be followed by the attachment of mission specific molecules to where those hydrogen molecules are located. These mission specific molecular catalysts allow for the possibility of a wide variety of functionality. They can not only be used as the basis for creating graphene-based , but tailored for electronics and optics applications, as well as novel types of metamaterials for nanoengineering highly efficient thermoelectric devices and sensors for various chemicals or pathogens. The beauty of this process is the promise it holds for future devices with the ability to efficiently accomplish a wide variety of highly sophisticated functions in one small affordable device.

Dr. Charles Lee, the AFOSR program manager who funded this research, notes that chemistry in general can enable smart materials for many special applications and that this latest effort in particular can contribute to future electronics applications and may be a way to arrive at faster and less energy consuming electronics.

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

Provided by Air Force Office of Scientific Research

4.6 /5 (5 votes)
add to favorites email to friend print save as pdf

Related Stories

Graphene's 'Big Mac' creates next generation of chips

Oct 09, 2011

The world's thinnest, strongest and most conductive material, discovered in 2004 at the University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, has the potential to revolutionize material ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Jan 24, 2012
I suppose we can think of graphane as a lego base. A two dimensional slab on which things can be built. I struggled to see what the news was in this story, but I suppose it is that Air Force Office of Scientific Research is funding this study.