Electronic tattoo monitors brain, heart and muscles (w/ video)

Jan 30, 2012 By Miles O' Brien and Jon Baime

Imagine if there were electronics able to prevent epileptic seizures before they happen. Or electronics that could be placed on the surface of a beating heart to monitor its functions. The problem is that such devices are a tough fit. Body tissue is soft and pliable while conventional circuits can be hard and brittle--at least until now.

"We're trying to bridge that gap, from silicon, wafer-based electronics to biological, 'tissue-like' electronics, to really blur the distinction between electronics and the body," says materials scientist John Rogers at the University of Illinois Urbana-Champaign.

This video is not supported by your browser at this time.

With support from the National Science Foundation (NSF), he's developing elastic electronics. The innovation builds upon years of collaboration between Rogers and Northwestern University engineer Yonggang Huang, who had earlier partnered with Rogers to develop flexible electronics for hemispherical camera sensors and other devices that conform to complex shapes.

This is circuitry with a real twist that's able to monitor and deliver into living tissue. Elastic electronics are made of tiny, wavy silicon structures containing circuits that are thinner than a human hair, and bend and stretch with the body. "As the skin moves and deforms, the circuit can follow those deformations in a completely noninvasive way," says Rogers. He hopes elastic electronics will open a door to a whole range of what he calls "bio-integrated" medical devices.

One example is what Rogers calls, an "electronic sock"--in this case, elastic electronics are wrapped around a model of a rabbit heart like a stocking. "It's designed to accommodate the motion of the heart but at the same time keep active electronics into contact with the tissue," explains Rogers.

Using animal models, Rogers has developed a version of the sock that can inject current into the to detect and stop certain forms of arrhythmia.

Rogers also demonstrates prototypes of a catheter that can be inserted through the arteries and into the chambers of the heart to map electrical activity and provide similar types of therapies.

He believes that one day this technology will lead to devices like an implantable circuit that diagnoses and perhaps even treats seizures by injecting current into the brain.

The device might detect differences in brainwave activity that occur just before a seizure sets in, and could automatically counteract any electrical abnormalities. Prototypes of the circuits are being tested that can detect muscle movement, activity and brain waves just by being placed on the surface of the skin like temporary tattoos. The prototypes can detect the body's electrical activity nearly as well as conventional, rigid electrode devices in use currently.

Rogers says their size could offer benefits in many important cases, such as monitoring the health and wellness of premature babies. "They are such tiny humans that this epidermal form of electronics could really be valuable in the monitoring of these babies in a manner that is completely noninvasive and mechanically 'invisible'," he points out.

Explore further: Researchers design a new system to make overtaking safer on highways

Related Stories

Researchers make new electronics -- with a twist

Nov 19, 2008

They've made electronics that can bend. They've made electronics that can stretch. And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting.

Recommended for you

Drone postal deliveries begin in Switzerland

12 hours ago

Wondering where your package is? Look up! Switzerland's postal service said Tuesday it had begun testing parcel deliveries by unmanned drones, although widespread use of the flying postmen is not likely to kick in for another ...

Omnidirectional free space wireless charging developed

12 hours ago

Mobile devices, such as smartphones and laptops, have become indispensable portable items in modern life, but one big challenge remains to fully enjoying these devices: keeping their batteries charged.

Europe's deepest glider to be developed

Jul 06, 2015

19 partners from across Europe have come together to develop Europe's first ultra-deep-sea robot glider. This glider will be capable of sampling the ocean autonomously at depths of 5000m, and maybe more in ...

Researchers help reconstructing the Michelangelo bronzes

Jul 06, 2015

Engineers and imagers from the University of Warwick's Warwick Manufacturing Group (WMG) and anatomists from Warwick Medical School at the University of Warwick are helping Art historians from the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

powerup1
1 / 5 (1) Mar 01, 2012
Our cyborg future is fast approaching. I science adds value to life.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.