Atomic core, shaken not stirred

January 5, 2012 By Ashley Yeager
Credit: Geo Martinez, 123rf.com.

When struck just right, protons and neutrons ring. The sub-atomic particles don’t jingle like when a hammer hits a bell. But they do jiggle in an odd dance where the protons move in one direction and the neutrons move the other way.

Studying this particular particle movement has been difficult because of other motion within an atom’s . But now, researchers using the High Intensity Gamma Ray Source, or HIGS, located on Duke’s campus, say they have gotten the best look yet at a nucleus as it starts its complex, resonant dance.

In the experiment, the researchers slammed a chunk of bismuth-209, which had 83 and 126 neutrons, with a polarized beam of high-energy photons.

The team then recorded all the gamma rays knocked from the nucleus after the collision. Based on the direction the gamma rays were traveling, the scientists were able to figure out the energy, width and strength of the resonance at which the particles’ rang.

The results, which appear in the Nov. 25 issue of Physical Review Letters, along with future studies on the vibrations of other nuclei planned at the HIGS facility will help theorists write a clear, accurate mathematical description of how protons and neutrons behave and also for the state of matter in black holes, stars and even in star explosions called supernovae.

Explore further: Pinning Down a Proton: Researchers Develop Method to Describe Binding of Protons and Neutrons

More information: New Method for Precise Determination of the Isovector Giant Quadrupole Resonances in Nuclei. Henshaw,S., Ahmed, M., Feldman, G., Nathan, A., and Weller, H. PRL 107, 222501 (2011). DOI: 10.1103/PhysRevLett.107.222501

Related Stories

Wallflowers become extroverts in a crowd

September 28, 2010

While it's long been said that two's company and three's a crowd, that's just how mesons like it. A recent experiment at DOE's Jefferson Lab demonstrates that these subatomic particles engage more with other particles when ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Macksb
3.7 / 5 (3) Jan 05, 2012
Many analogies can be drawn. Consider one: the vortices that appear in superfluid helium when excess energy is added to the system, by, for example, rotating the container beyond a critical point. Such vortices are the physical manifestation of the superfluid system shedding the energy that cannot "fit" within the system.

Here, the "hammer" adds excess energy to a complex system, the nucleus. It does not fit. The system sheds the energy--protons doing so in one way, neutrons in another way.

In both cases, the dumped energy is in the form of quantized oscillations. Conversely, the system--superfluid helium, or the nucleus--is also a quantized system comprised of interconnected oscillations that must be just so; new energy must be shed, or the system will collapse. Those are the only two alternatives.
Callippo
1 / 5 (1) Jan 07, 2012
Such resonances could explain the mechanism of cold fusion at certain cases, especially in connections with similar resonance of electron orbitals. We should realize, at the case of large atoms the binding energy of electrons at the bottom of orbitals becomes comparable to the binding energy of neutrons residing at the outer halo of nuclei, so that they could interact mutually.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.