Physicists 'turn signals' for neuron growth

Dec 15, 2011
Physicists 'turn signals' for neuron growth
Time-lapse images when a Vaterite particle is rotated anticlockwise and positioned to the left of the axon defined by the growth direction of the axon (dashed arrow 1). (From Nature Photonics)

(PhysOrg.com) -- A new paper scheduled for publication in the January issue of Nature Photonics describes the use of spinning microparticles to direct the growth of nerve fiber, a discovery that could allow for directed growth of neuronal networks on a chip and improve methods for treating spinal or brain injuries.

Samarendra Mohanty, an assistant professor of at The University of Texas at Arlington, is a coauthor of the paper, which is now available online.

The study is based on Mohanty’s hypothesis that neurons can respond to physical (e.g. fluid flow) cues in addition to chemical cues. He conducted the seminal work and observed that a laser-driven spinning Calcite microparticle could guide the direction of neuron growth. Its rotation caused a shearing effect by creating a microfluidic flow.

Mohanty’s work led the University of California, Irvine team led by Professor Michael Berns to test the Vaterite “micro-motors” in guiding neurons.

Mohanty said: “This is the first report to demonstrate that neurons can be turned in a controlled manner by microfluidic flow. With this method, we can direct them to turn right or turn left and we can quickly insert or remove the rotating beads as needed. But flow can be generated by any means. In the body, for example, it will be more convenient to use a tube carrying fluids.”

The researchers in the UC Irvine experiments used a laser tweezers system to trap a birefringent particle (Calcite or Vaterite) near axonal growth cones, which are the tips of neurons where connections are made with other neurons or cells. The same laser causes rotation of the particle, which creates the flow, Mohanty said.

The paper reports that the new method successfully turned the growing axon in a new direction up to 42 percent of the time in lab experiments. The authors noted that the method could also be used to funnel growth between two rotating particles. The effects also may be reproducible on a larger scale, they said.

“One can envision large arrays of these devices that can direct large numbers of axons to different locations,” the authors wrote. “This may have the potential for use in vivo to direct regenerating axons to mediate brain and spinal cord repair.”

Mohanty said that during neurogenesis – the process by which neurons grow and develop in a fetus – flow of spinal fluid can influence guidance of neurons to their destinations. His lab at UT Arlington is currently developing a novel optical method that allows long-range optical guidance of with 100 percent efficacy without use of any additional external objects.

In addition to UC Irvine and UT Arlington, other authors on the study hail from the Quantum Science Laboratory at The University of Queensland in Australia.

The paper said the experiments shed valuable light on the effect of shear or lateral forces on neuron growth and that knowledge may even apply to other forms of cell growth. 

Explore further: High power laser sources at exotic wavelengths

More information: www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2011.287.html

Provided by University of Texas at Arlington

4.5 /5 (6 votes)

Related Stories

Biologists discover genes that repair nerves after injury

Sep 21, 2011

Biologists at the University of California, San Diego have identified more than 70 genes that play a role in regenerating nerves after injury, providing biomedical researchers with a valuable set of genetic leads for use ...

Researchers regenerate axons necessary for voluntary movement

Apr 06, 2009

For the first time, researchers have clearly shown regeneration of a critical type of nerve fiber that travels between the brain and the spinal cord and which is required for voluntary movement. The regeneration was accomplished ...

Helping neurons stay on track

Aug 26, 2011

The complex inner wiring of the brain is coordinated in part by chemical guidance factors that help direct the interactions between individual neurons. As growing cells extend their axons outward, these tendrils ...

Recognizing blood poisoning quickly

Dec 02, 2011

(Medical Xpress) -- Is the patient suffering from blood poisoning? To answer this question, the doctor draws a blood sample and sends it to a central laboratory for testing. This takes up valuable time, which ...

Blood pressure research addresses differences

Nov 21, 2011

(Medical Xpress) -- A UT Arlington researcher’s recent work may hold clues as to why hypertension is more severe and strikes earlier in the African-American population.

Recommended for you

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.