Gamburtsev Subglacial Mountains enigma unraveled in East Antarctica

Nov 16, 2011
Schematic showing that proposed rifting processes within the East Antarctic Rift System that provided the tectonic trigger for uplift of the Gamburtsev Mountains.

The birth of the Gamburtsev Subglacial Mountains buried beneath the vast East Antarctic Ice Sheet – a puzzle mystifying scientists since their first discovery in 1958 – is finally solved. The remarkably long geological history explains the formation of the mountain range in the least explored frontier on Earth and where the Antarctic Ice Sheet first formed. The findings are published this week in the journal Nature.

A seven-nation team of scientists explored the Gamburtsev Subglacial Mountains - buried beneath up to 3 km of ice – during the International Polar Year (2007- 09) by using two twin-engine aircraft equipped with ice penetrating radars, gravity meters and magnetometers.

By analyzing the new data, the researchers describe the extraordinary processes – which took place over the last billion years – that created and preserved a root beneath the mountains and the East Antarctic rift system – a 3,000 km long fracture in the earth's surface that extends from East Antarctica across the ocean to India.

One billion years ago, before animals and plants evolved on Earth, several continents (or micro-continents) collided, crushing the oldest rocks of the mountain range together. This event formed a thick crustal root extending deep beneath the mountain range. Over time these ancient mountains were eroded but the cold dense root was left behind.

Around 250-100 million years ago – when dinosaurs walked the Earth – rifting paved the way for the supercontinent Gondwana to break apart, which included Antarctica, causing the old crustal root to warm. This rejuvenated crustal root, together with the East Antarctic Rift forced the land upwards again reforming the mountains. Rivers and glaciers carved deep valleys and this helped uplift the peaks to create the spectacular landscape of the Gamburtsevs, which resemble the European Alps. The East Antarctic Ice Sheet, which formed 34 million years ago and covers 10 million km² of our planet (an area the size of Canada), protected the mountains from erosion.

Lead author, Dr Fausto Ferraccioli from British Antarctic Survey says, "Understanding the origin of the Gamburtsevs was a primary goal of our International Polar Year expedition. It was fascinating to find that the East Antarctic rift system resembles one of the geological wonders of the world – the East African rift system – and that it provides the missing piece of the puzzle that helps explain the Gamburtsev Subglacial Mountains. The was also found to contain the largest subglacial lakes in Antarctica."

Co-author, Dr Carol Finn from US Geological Survey says, "Resolving the contradiction of the Gamburtsev high elevation and youthful Alpine topography but location on the East Antarctic craton by piecing together the billion year history of the region was exciting and challenging. We are accustomed to thinking that mountain building relates to a single tectonic event, rather than sequences of events. The lesson we learned about multiple events forming the Gamburtsevs may inform studies of the history of other mountain belts."

Co-author, Dr Robin Bell of Columbia University's Lamont-Doherty Earth Observatory says, "The next steps will be to assemble a team to drill through the ice into the to obtain the first rock samples from the Gamburtsevs. Amazingly, we have samples of the moon but none of the Gamburtsevs. With these rock samples we will be able to constrain when this ancient piece of crust was rejuvenated and grew to a magnificent mountain range."

"It is very fitting that the initial results of Antarctica's Gamburtsev Province (AGAP) project are coming out 100 years after the great explorers raced to the South Pole," said Alexandra Isern, Programme Director at the National Science Foundation. "The scientific explorers of the AGAP project worked in harsh conditions to collect the data and detailed images of this major under the East . The results of their work will guide research in this region for many years to come."

These discoveries in central East Antarctica have significant implications for understanding mountain building and evolution within continental interiors.

Explore further: New, tighter timeline confirms ancient volcanism aligned with dinosaurs' extinction

More information: Further information about the project can be found at: www.ldeo.columbia.edu/res/pi/gambit/ and www.antarctica.ac.uk/press/fea… GAP/hidden_world.php

Related Stories

Origin of Alps-size Antarctic mountain range unknown

Oct 15, 2008

A U.S.-led, multinational team of scientists this month will investigate one of the Earth's last major unexplored places, using sophisticated airborne radar and ground-based seismologic tools to virtually peel away more than ...

Some Antarctic ice is forming from bottom

Mar 03, 2011

Scientists working in the remotest part of Antarctica have discovered that liquid water locked deep under the continent's coat of ice regularly thaws and refreezes to the bottom, creating as much as half the ...

Recommended for you

Improving forecasts for rain-on-snow flooding

15 hours ago

Many of the worst West Coast winter floods pack a double punch. Heavy rains and melting snow wash down the mountains together to breach riverbanks, wash out roads and flood buildings.

The Greenland Ice Sheet: Now in HD

16 hours ago

The Greenland Ice Sheet is ready for its close-up. The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GeoGeo
not rated yet Nov 16, 2011
Rifting causing mountains the size of the Alps through uplift alone doesn't seem likely. In extensional basins the uplift is so minor as to be nearly negligible relative to the degree of subsidence, let alone having a 3km thick ice sheet pushing down on them, with super cooled water running though the fractures. I'll have to look into this one more closely, but for now I remain highly skeptical of their interpretation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.