Earthquakes: Water as a lubricant

Nov 30, 2011

Geophysicists from Potsdam (Germany) have established a mode of action that can explain the irregular distribution of strong earthquakes at the San Andreas Fault in California. As the science magazine Nature reports in its latest issue, the scientists examined the electrical conductivity of the rocks at great depths, which is closely related to the water content within the rocks. From the pattern of electrical conductivity and seismic activity they were able to deduce that rock water acts as a lubricant.

Los Angeles moves toward San Francisco at a pace of about six centimeters per year, because the Pacific plate with Los Angeles is moving northward, parallel to the North American plate which hosts San Francisco. But this is only the average value. In some areas, movement along the fault is almost continuous, while other segments are locked until they shift abruptly several meters against each other releasing energy in strong earthquakes. After the San Francisco earthquake of 1906, the plates had moved by six meters.

The acts like a seam of the earth, ranging through the entire crust and reaching into the mantle. from the GFZ German Research Centre for Geosciences have succeeded in imaging this interface to great depths and to establish a connection between processes at depth and events at surface. "When examining the image of the , it becomes clear that rock water from depths of the , i.e. between 20 to 40 km, can penetrate the shallow areas of the creeping section of the fault, while these fluids are detained in other areas beneath an impermeable layer", says Dr. Oliver Ritter of the GFZ. "A sliding of the plates is supported, where fluids can rise."

These results suggest that significant differences exist in the mechanical and material properties along the fault at depth. The so-called tremor signals, for instance, appear to be linked to areas underneath the San Andreas Fault, where fluids are trapped. Tremors are low-frequency vibrations that are not associated with rupture processes as they are typical of normal earthquakes. These observations support the idea that fluids play an important role in the onset of earthquakes.

Explore further: Study links polar vortex chills to melting sea ice

More information: M. Becken et al., "Correlation between deep fluids, tremor and creep along the central San Andreas fault", Nature No. 480, Dec. 2011, pp. 87-90, dx.doi.org/10.1038/nature10609

Related Stories

New way to monitor faults may help predict earthquakes

Oct 01, 2009

Scientists at the Carnegie Institution have found a way to monitor the strength of geologic faults deep in the Earth. This finding could prove to be a boon for earthquake prediction by pinpointing those faults that are likely ...

Why do earthquakes stop?

Feb 06, 2008

The underlying structure of a fault determines whether an earthquake rupture will jump from one fault to another, magnifying its size and potential devastation. Understanding why some earthquakes terminate along a fault, ...

Recommended for you

Tropical Storm Dolly forms, threatens Mexico

7 hours ago

Tropical Storm Dolly formed off Mexico's northeastern coast on Tuesday and headed toward landfall in Tamaulipas state, threatening to spark floods and mudslides, forecasters said.

Giant garbage patches help redefine ocean boundaries

10 hours ago

The Great Pacific Garbage Patch is an area of environmental concern between Hawaii and California where the ocean surface is marred by scattered pieces of plastic, which outweigh plankton in that part of ...

New satellite maps out Napa Valley earthquake

11 hours ago

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

robbor
not rated yet Nov 30, 2011
so it would be a good idea not to frack around the San Andreas Fault ?