Dutch team provides alternative to optical semiconductor amplifiers

Nov 18, 2011
Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.

Researchers at the University of Twente's MESA+ research institute have developed a material capable of optical amplifications that are comparable to those achieved by the best, currently available semiconductor optical amplifiers. The researchers expect that this material will accelerate data communication and, ultimately, provide an alternative to short distance data communication (at the μm-cm scale).

On 16 November, University of Twente researcher Dimitri Geskus defended his PhD thesis based on this research.

The increasingly exacting requirements being imposed on data communication are boosting demand for high-speed optical amplifiers. Current optical amplifiers suffer from the drawback that their speed is limited.

Researchers at the university have now developed a material capable of optical amplifications which match those achieved using the best, currently available semiconductor optical amplifiers, but at potentially higher data communication rates.

This material consists of thin crystalline layers whose optical properties were specially designed for the optical circuits found on chips. The researchers can fine-tune the properties of these thin crystalline layers by changing their composition.

Using a clever trick, they were able to embed much higher concentrations of optically active Ytterbium ions (Ytterbium is a rare-earth element) in the crystal.

In this way, they have boosted the optical amplification of currently available rare-earth-doped by more than one hundredfold. This will ultimately pave the way for faster and cheaper optical .

Details of this work, drawn from Mr Geskus' dissertation, were recently published in the leading scientific journal Advanced Materials.

Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Heavy metal glass helps light go the distance

Jun 16, 2010

The fiber optic cable networks linking the world are an essential part of modern life. To keep up with ever-increasing demands for more bandwidth, scientists are working to improve the optical amplifiers that boost fiber ...

Photonics: Pump up the bandwidth

Jun 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

Scientists succeed in cooling solid material with laser

Jul 26, 2006

A team of researchers at the University of the Basque Country have experimentally demonstrated something that other scientists have been trying to achieve for decades: the cooling of erbium-doped materials with laser light.

NIST releases new standard for semiconductor industry

Oct 12, 2006

A wide range of optical electronic devices, from laser disk players to traffic lights, may be improved in the future thanks to a small piece of semiconductor, about the size of a button, coated with aluminum, gallium, and ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guideĀ to support physicists participating in radiation dosimetry audits.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.