Blossom end rot: Transport protein identified

Nov 23, 2011
This is a spotty apple due to poor calcium distribution. Credit: Picture: Agroscope

Poor calcium distribution in agricultural crops causes substantial loss of income every year. Now a Korean-Swiss research team under the co-leadership of plant physiologists at the University of Zurich identified a protein that regulates calcium transport in the plant root and up to the shoot. For plant breeding, the specific transport protein provides a first step toward correcting deficiency symptoms in food plants.

Blossom end rot on tomatoes and cucumbers, bitter-pit in apples – these unpleasant blemishes on fruits and vegetables not only compromises the flavor but also causes significant harvest losses every year. The characteristic blotches and spotting can be traced back to insufficient calcium uptake or faulty calcium transport within the plant. Consequently, the damage can occur even if the soil provides sufficient calcium.

A team under the leadership of scientists from the University of Zurich and Pohang University of Science and Technology, Korea, has for the first time identified a protein which is responsible for the calcium transport from the root to the shoot. "Without this , plants exhibit stunted growth," explains Enrico Martinoia, Professor for Molecular Plant Physiology at the University of Zurich.

This shows blossom end rot on tomatoes. Credit: Picture: Agroscope

Calcium provides stable cell walls for plants and transmits signals within the cells. Calcium concentration varies within the plant depending on area, which requires complex regulation and transport mechanisms. How and from which tissue calcium ions are taken up by the roots and transported to the shoot of the plant was largely unknown before. In order to settle these questions, the scientists examined the cultivated plant Brassica Juncea, commonly known as brown or Indian mustard, and the model plant Arabidopsis thaliana, or thale cress. The researchers identified a specific transport protein which advances calcium ions from the root into the shoot.

In their article recently published in the Proceedings of the National Academy of Sciences, they also show that the calcium uptake occurs via the root epidermis and not through the endoderm as earlier presumed. The identification of the transport protein for is a first step in eliminating the formidable deficiency symptoms in food plants.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Wong-Yong Song, Kwan-Sam Choi, De Angeli Alexis, Enrico Martinoia and Youngsook Lee. Brassica juncea plant cadmium resistance 1 protein (PCR1) facilitates the radial transport of calcium in the root. PNAS. October 14, 2011. doi: 10.1073/pnas.1104905108

Related Stories

How plants manage calcium may reduce effects of acid rain

Mar 09, 2007

A new understanding of how plants manage their internal calcium levels could lead to modifying plants to avoid damage from acid rain. The pollutant disrupts calcium balance in plants by leaching significant amounts of the ...

How roots find a route

Feb 28, 2008

Scientists at the John Innes Centre in Norwich have discovered how roots find their way past obstacles to grow through soil. The discovery, described in the forthcoming edition of Science, also explains how ...

Unraveling plant reactions to injury

May 27, 2011

Better understanding of plant defense systems, and the potential to generate stress-tolerant plants and even new malaria drugs, may all stem from the documentation of a molecular mechanism that plays a significant ...

Getting to the root of nutrient sensing

Jun 14, 2010

New research published by Cell Press in the June 15th issue of the journal Developmental Cell, reveals how plants modify their root architecture based on nutrient availability in the soil.

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Pirouette
not rated yet Nov 23, 2011
Very good news for farming producers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.