The molecular force is with this team

October 26, 2011 by Adrienne Wright

Xiaohui “Frank” Zhang is integrating physics, immunology and biology to develop a “nanodevice” that could provide a new treatment for stroke, thrombosis and atherosclerosis.

Zhang, assistant professor of mechanical engineering and mechanics and faculty member in the bioengineering program, leads an interdisciplinary research team seeking to deliver medication to targeted regions of the human body.

Their device measures tens of nanometers in size.

The researchers study mechanosensing—how cells sense and respond to mechanical stimuli. Mechanosensing is crucial in the development of tissues and the progression of cardiovascular diseases.

“Of the three basic ways that cells communicate with each other—chemical, electrical and mechanical—the last is by far the least understood,” says Zhang.

One reason mechanosensing is not studied extensively is because the mechanical forces imposed on cells occur on a molecular level, he says.

“It’s very hard to measure and exert force on molecules.”

A nanodevice with a mechanical switch

Zhang uses single molecule force spectroscopy to monitor, manipulate and measure mechanical forces. With optical tweezers, he exerts minute forces onto samples and records the dynamics of protein conformation and mechanical response in real time.

His team studies integrin, a protein molecule that serves as a mechanical sensor to transmit signals across the cell membrane. The hypothesis is that integrin will alter its shape in response to mechanical stimuli, thereby acting as a “switch” to transmit a signal.

The team also studies the transmission of mechanical signals across the cell membrane and monitors the interplay between mechanical signals and biochemical activities. The goal is to develop a mechanically switchable nanodevice for targeted drug therapy.

“When you put a drug in the bloodstream, it disperses throughout the body,” says Zhang. “A nanodevice would be able to carry a drug through the bloodstream to a specific location. When activated by mechanical stimuli, it would undergo a shape change and release its preloaded drug.”

Nanodevices could be used in biosensing and diagnosis, and could help achieve low-cost, low-side-effect treatment of thrombosis, stroke and atherosclerosis.

Zhang’s team is designing a polymer that mimics a blood-clotting molecule called the von Willebrand Factor (vWF), which binds with platelets during rapid blood flow.

Out of diverse interests, a single purpose

Zhang earned a B.S. in physics, studied physiology and biophysics in medical school, and trained in immunology before joining the faculty.

This diverse background led him to mechanobiology, which incorporates techniques from physics, biology, chemistry, computer simulation and polymer synthesis.

His team at Lehigh includes a postdoctoral fellow in physics, a research associate with a medical education, and undergraduate students in biology, engineering and physics. 

“Everyone brings something different to the table,” he says.

Lehigh’s emphasis on interdisciplinary study, says Zhang, aligns with his research focus.

“The real excitement of this project is that we’re trying to understand nature. That requires an interdisciplinary approach to determine how the molecule works. There’s no better place to do this than at Lehigh.”

Explore further: The 'quantum magnet': Physicists expand prospects for engineering unusual materials

Related Stories

Grafting olfactory receptors onto nanotubes

July 26, 2011

(PhysOrg.com) -- Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Taking a closer look at cancer

September 12, 2011

(PhysOrg.com) -- Using a unique combination of biology and physics techniques, Swinburne University of Technology researchers are improving our understanding of cancer on a microscopic scale.

A model could guide the design of artificial composites

September 19, 2011

Many biomaterials such as bone, shell and mineralized tendon have a hierarchical structure that provides the material with exceptional mechanical and load-bearing properties, even though the building blocks of such structures ...

Shining light on the elusive carbon nanotube

October 20, 2011

Michael Blades shakes a small bottle of liquid and watches as tiny black specks swirl around. Each speck represents a cluster of millions of carbon nanotubes (CNTs).

Recommended for you

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Counting cancer-busting oxygen molecules

February 5, 2016

Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep ...

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.