Bismuth-based semiconducting material could enable control of electron spin

Oct 14, 2011
Figure 1: The layered atomic structure of BiTeI creates a three-dimensional version of the Rashba effect, normally seen at only two-dimensional surfaces and interfaces (pink, bismuth; blue, tellurium; iodine, green).

In the developing field of spintronics, physicists are designing devices to transmit data using the inherent axial rotation, or spin, of electrons rather than their charge as is used in electronics. Weak coupling of electron spin to electrical currents, however, makes gaining this level of control difficult. Yoshinori Tokura from the RIKEN Advanced Science Institute, Wako, working with colleagues from across Japan, has now shown that the semiconducting material BiTeI could provide the control needed because of its unusual atomic arrangement.

Spin can take one of two values, conventionally labeled ‘up’ and ‘down’. Usually, an electron in a state with an up-spin has the same energy as an electron in the equivalent down-spin state. This so-called ‘energy degeneracy’ makes it difficult to control up and down spins independently. “A principle technique in spintronics is to manipulate spin by means of an electric current or voltage,” says University of Tokyo scientist and co-author of the paper Kyoko Ishizaka. “Lifting this degeneracy will enable a number of novel spin-to-current conversion techniques.”

One way to split the energy of the two spin states is to destroy the symmetry of the atomic lattice; at a surface or at the interface between two materials for example. This is known as the Rashba effect. Physicists have observed this effect; however, splitting energy in these two-dimensional (2D) systems was, in general, too small for real applications. Tokura, Ishizaka and their team demonstrated experimentally a Rashba-type effect in three-dimensional, or ‘bulk’, BiTeI. “In 2D Rashba systems, spintronic function is hindered by the electrons away from the surface, which remain degenerate,” explains Ishizaka. “In BiTeI, on the other hand, all the carrier electrons are spin-split.”

The researchers studied BiTeI using a technique called angle-resolved photoemission spectroscopy, whereby excited from the surface of a sample by incoming light provided details about the material’s energy structure. The measurements showed that the spin splitting was large enough to make BiTeI a potential material for various spin-dependent electronic functions. The researchers took a first-principles approach to modeling their material system to obtain a better understanding of the origin of this effect. They showed that the large amount of spin-splitting was a result of the layered atomic structure of BiTeI (Fig. 1) in which the bismuth, tellurium and iodine atoms arranged into separate tiers, each with a triangular lattice.

“Next we will study the spin-dependent transport and optical properties of BiTeI, with the aim of making a functional device,” says Ishizaka.

Explore further: Physicists advance understanding of transition metal oxides used in electronics

More information: Ishizaka, K., Bahramy, M.S., Murakawa, H., Sakano, M., Shimojima, T., Sonobe, T., Koizumi, K., Shin, S., Miyahara, H., Kimura, A. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Materials 10, 521–526 (2011). www.nature.com/nmat/journal/v1… n7/abs/nmat3051.html

add to favorites email to friend print save as pdf

Related Stories

Creating a pure spin current in graphene

Feb 07, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

New tool for proton spin

May 06, 2011

How the particles that constitute a proton give rise to is to its rotation, or ‘spin’, is an intriguing open question of contemporary particle physics. A technique that could provide some answers ...

A remarkable step toward next-generation energy-conservation

Jun 29, 2011

Tohoku University, Osaka University and Japan Science and Technology Agency (JST) announced that they succeeded in directly observing electron spins in a topological insulator. The work has been published in Physical Review Le ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.