Could the combination of general relativity and quantum mechanics lead to spintronics?

( -- In the early 20th century, two famous discoveries about spin were made. One of them, discovered by Albert Einstein and Wander Johannes de Haas, explains a relationship between the spin of elementary particles. They found a relationship between magnetism and angular momentum. (Around that time, Einstein also put forth his theory of general relativity.) A little more than a decade later, Paul Dirac unveiled his equation dealing with a relativistic quantum mechanical wave, providing an explanation of electrons as elementary spin-1/2 particles.

Even though both of these discoveries have existed for nearly century, Sadamichi Maekawa tells, no one thought about combining them. “For nearly 100 years, people did not study putting these together. We decided to combine different ideas to come up with a fundamental Hamiltonian to investigate mechanical rotations in the Dirac equation.”

Maekawa, a scientist working with the Japan Atomic Energy Agency, as well as the Japan Science and Technology Agency, worked with scientists associated with Kyoto University and Tohoku University, to come up with a new model of spin that could be helpful in the development of . Mamoru Matsuo, Jun’ichi Ieda and Eiji Saitoh were all involved in creating the new model, which is published in Physical Review Letters: “Effects of Mechanical Rotation on Spin Currents.”

“The Einstein-de Haas effect is brought about by the conservation between magnetism and rotational motion,” Maekawa explains. “Quantum mechanics tells us that the origin of magnetism is electron spin. Recent progress in nanotechnology enables us to manipulate the flow of electron spins, or ‘spin current’”. He points out that the relationship between spin current and magnets has been studied for nanodevice applications, but there has been little attention paid to the way rotational motion can be used to control spin current.

In Japan, Maekawa and his colleagues decided that studying how to use mechanical rotation to direct spin current could be advantageous in the development of spintronic devices that scientists think could eventually replace silicon-based electronics. “We found that we needed to add general relativity to the equation,” Maekawa says. “Dirac included special relativity, but general relativity was needed as well. We combined the two Einstein theories, and added them to the theory of . This way, we added mechanical rotation to the quantum equation.”

Part of this new model includes extending the physical system into a noninertial frame from its present inertial frame. Maekawa and his fellows relied on the fact that the dynamics of spin currents is closely related to the spin-orbit interaction, resulting from using the low energy limit of the Dirac equation. “We tried to combine general relativity and spin current, even though general relativity is not so popular in condensed matter physics right now,” he explains. The result, Maekawa points out, is that it should be possible to control using mechanical means.

For now, the model is theory. “We formulated an equation, and in the future we hope to try the theory,” Maekawa says. He believes that, “this theory will give birth to nanoscale motor and dynamo,” providing a practical way to realize spintronics in the future.

Explore further

Creating a pure spin current in graphene

More information: Mamoru Matsuo, Jun’ichi Ieda, Eiji Saitoh, and Sadamichi Maekawa, “Effects of Mechanical Rotation on Spin Currents,” Physical Review Letters (2011). Available online:

Copyright 2010
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Citation: Could the combination of general relativity and quantum mechanics lead to spintronics? (2011, March 3) retrieved 19 July 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Mar 03, 2011
Electron spin is the origin of magnestism? I am not prepared to dispute this, but can someone explain this statement?

Mar 03, 2011
A moving charge (electric current) creates magnetic fields, see Biot-Savart Law. I presume what is meant by the statement above, is that in materials the spin orientation and order determines its magnetic properties, i.e., if the spin orientation of the external shell electons are random the material will not posses macroscopic magnetism.

Mar 03, 2011
If they can manipulate spin, does than mean they can make "non-magnetic" materials magnetic, or make the strength of the magnetic field any material semi-arbitrarily strong?

What about a device that changes the way a material interacts with em fields? A REAL cloaking device? A device that allows something to pass through solid matter?

Mar 03, 2011
There is a somewhat heuristic explanation I should have referred to first on Wikipedia's magnetism article under the "quantum mechanical origin of magnetism".

The usual explanations for magnetism are moving charge, yes, and there are some elegant ways of showing that this is a consequence of relativity with respect to the electric field. I think here, however, the statement refers to "the origin of magnetic materials" or of inherent magnetism in atoms and molecules rather than strictly the origin of magnetism as a entire phenomenon

Mar 04, 2011
Probably going to get static for this, but hey, free thinking comes with a price sometimes. lol. Check out The Resonance Project dot org, under the "Research" tab, The Origin of Spin.

Spacetime curvature, not just a trampoline being pushed down, but it's also twisted.

Mar 04, 2011
...The Resonance Project...

He says "probably going to get static". Good on ya!
L Ron Hubbard anyone? There is some potential in there for something, but man does it get drown out with the asteroids, Kabbalah, etc.

Mar 07, 2011
I think a relative example may be the (recent) methods used to find new planets, by watching the wobble(dimension of spin) that results from the attraction of smaller planets in orbit - now think of some moon around that planet orbiting that star, then some satellite orbiting that moon. Everything effects everything else and it's an energy balance that equals zero on both sides. It's the details and infinite divisions that provide the bigger picture. Err or something like that :p

I am interested to hear anyones thoughts on if this example is applicable or if I misunderstand the theory of 'spintronics'

Mar 17, 2011
Nassim Haramein's stuff (Resonance Project) is amazing to me and falls along these lines. While he might come to some different conclusions than I do on its implications, this theory makes tons of sense, to me. Also, the fact that ancient wisdom and modern science are meeting is fantastic, IMO--I'm not sure why there is this sense of competition between science and spirituality.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more