New bacteria toxins against resistant insect pests

October 19, 2011
This is a tobacco budworm (Heliothis virescens). Credit: Melanie Marr, MPI for Chemical Ecology

Toxins from Bacillus thuringiensis bacteria (Bt toxins) are used in organic and conventional farming to manage pest insects. Sprayed as pesticides or produced in genetically modified plants, Bt toxins, used in pest control since 1938, minimize herbivory in crops, such as vegetables, maize or cotton. Since 1996, Bt producing transgenic crops have been grown, which successfully control pests like the European corn borer, the tobacco budworm, the Western corn rootworm, and the cotton bollworm. Over the years, Bt resistant insects have emerged in organic and conventional farming. Scientists have therefore modified the molecular structure of two Bt toxins, Cry1Ab and Cry1Ac, in order to overcome resistance. The novel toxins, Cry1AbMod and Cry1AcMod, are effective against five resistant insect species, such as the diamondback moth, the cotton bollworm, and the European corn borer. Cry1AbMod and Cry1AcMod can be used alone or in combination with other Bt toxins for plant protection.

New insights into the mechanisms of action of Cry1Ab and Cry1Ac served as the basis for development of the modified Bt toxins. The primary question had been why the Cry proteins, which naturally occur in B. thuringiensis, have such a resoundingly on many different . Researchers had previously found a protein in the caterpillars' midgut that binds Bt toxins – with fateful consequences for the insects, because binding the toxins causes the gut cells to die. This protein is one of the many types of cadherin proteins in the cell. Mutations of a specific cadherin can make the resistant against the toxins.

"When we studied the new Bt toxins in twelve resistant and non-resistant strains of five major pest species, the results of our experiments were encouraging but surprising. The new toxins are also effective against strains whose Bt resistance is not based on cadherin mutations," says David G. Heckel, director of the Department of Entomology at the Max Planck Institute for Chemical Ecology in Jena, Germany, and co-author of the study. Especially interesting was the finding that the new toxins were specifically effective against a super-resistant strain of tobacco budworm carrying both the cadherin mutation and another mutation affecting an ABC transporter which was discovered by the Max Planck researchers last year.

Particularly striking was the effect of Cry1AbMod and Cry1AcMod on a Bt resistant corn borer and a resistant diamondback moth strain that was 350 times stronger compared to that of the natural toxins. On the other hand, the new toxins had only a weak effect on some strains whose Bt resistance is due to a mutated cadherin.

If both novel Bt toxins prove to be useful in agriculture, they can be used in combination with different Bt toxins to guarantee a reliable effect on herbivorous pests. Biologists also agree that measures to reduce the occurrence of resistant insect pests must be strictly adhered to and that farmers should be informed in detail. Such measures would mainly include the use of different pesticides, crop rotation, and simultaneous sowing of non-Bt plants in fields, where transgenic Bt varieties are grown.

Explore further: China's GM cotton farmers are losing money

More information: Tabashnik, B. E., Huang, F., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Rangasamy, M., Yang, Y., Wu, Y., Gahan, L. J., Heckel, D. G., Bravo, A., Soberón, M. (2011). Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology. doi: 10.1038/nBt.1988

Related Stories

Researchers identify insect resistance to Bt pesticide

August 30, 2011

For the first time, researchers have identified how cabbage looper caterpillars in the field develop resistance to the bacterium Bacillus thuringiensis (Bt), which naturally occurs in the soil and on plants and has been developed ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.