Research explains how phase segregation affects efficiency in organic photovoltaics

Sep 21, 2011 By Paul Haney

Recent theoretical work conducted at the NIST Center for Nanoscale Science and Technology explains the surprisingly small effect of macroscale phase segregation on the overall efficiency of blended organic photovoltaic (OPV) materials by showing that electrons can effectively burrow through a skin layer to get to the device’s cathode. 

OPVs consist of two types of organic molecules, electron donors and electron acceptors, which are uniformly blended throughout the volume of the material. In an OPV, light photoexcites a bound electron-hole pair, which separate at the interface between donor and acceptor.

The separated free charges migrate to different contacts, generating an electrical current. The choice of electrode material is crucial to the operation of the OPV. The cathode must preferentially collect and the anode must preferentially collect holes. 

Recent studies of OPV materials conducted at the CNST and elsewhere revealed a donor-rich hole transporting skin layer near the cathode. 

This phase , or high hole concentration, is due to the smaller surface energy of the donor-cathode interface relative to the acceptor-cathode interface. 

The fact that the electron collector has mostly holes in its vicinity would seem to be an impediment to charge collection and overall efficiency. 

However, the ratio of collected to excited charge is still high. By extending previously developed models to account for macroscopic phase segregation, it was theoretically determined that charges can rather easily “squeeze” through regions of reduced density.  

This effect explains the relatively benign influence of the skin layer on overall device performance. The work demonstrates that cathode phase segregation should not be an impediment to the development of high efficiency OPVs.

Explore further: Study reveals new characteristics of complex oxide surfaces

More information: Organic photovoltaic bulk heterojunctions with spatially varying composition, P. M. Haney, Journal of Applied Physics 110, 024305 (2011).

add to favorites email to friend print save as pdf

Related Stories

Gravity eases its pull

Nov 04, 2010

(PhysOrg.com) -- Ever since Galileo first dropped his balls off the top of the Tower of Pisa in the late 16th century, gravity has caused a major headache for mathematicians and physicists down the ages.

Recommended for you

Tough foam from tiny sheets

16 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0