Research explains how phase segregation affects efficiency in organic photovoltaics

Sep 21, 2011 By Paul Haney

Recent theoretical work conducted at the NIST Center for Nanoscale Science and Technology explains the surprisingly small effect of macroscale phase segregation on the overall efficiency of blended organic photovoltaic (OPV) materials by showing that electrons can effectively burrow through a skin layer to get to the device’s cathode. 

OPVs consist of two types of organic molecules, electron donors and electron acceptors, which are uniformly blended throughout the volume of the material. In an OPV, light photoexcites a bound electron-hole pair, which separate at the interface between donor and acceptor.

The separated free charges migrate to different contacts, generating an electrical current. The choice of electrode material is crucial to the operation of the OPV. The cathode must preferentially collect and the anode must preferentially collect holes. 

Recent studies of OPV materials conducted at the CNST and elsewhere revealed a donor-rich hole transporting skin layer near the cathode. 

This phase , or high hole concentration, is due to the smaller surface energy of the donor-cathode interface relative to the acceptor-cathode interface. 

The fact that the electron collector has mostly holes in its vicinity would seem to be an impediment to charge collection and overall efficiency. 

However, the ratio of collected to excited charge is still high. By extending previously developed models to account for macroscopic phase segregation, it was theoretically determined that charges can rather easily “squeeze” through regions of reduced density.  

This effect explains the relatively benign influence of the skin layer on overall device performance. The work demonstrates that cathode phase segregation should not be an impediment to the development of high efficiency OPVs.

Explore further: Using strong lasers, investigators observe frenzy of electrons in a new material

More information: Organic photovoltaic bulk heterojunctions with spatially varying composition, P. M. Haney, Journal of Applied Physics 110, 024305 (2011).

add to favorites email to friend print save as pdf

Related Stories

Gravity eases its pull

Nov 04, 2010

(PhysOrg.com) -- Ever since Galileo first dropped his balls off the top of the Tower of Pisa in the late 16th century, gravity has caused a major headache for mathematicians and physicists down the ages.

Recommended for you

First direct observations of excitons in motion achieved

6 minutes ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 0

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.