Research explains how phase segregation affects efficiency in organic photovoltaics

Sep 21, 2011 By Paul Haney

Recent theoretical work conducted at the NIST Center for Nanoscale Science and Technology explains the surprisingly small effect of macroscale phase segregation on the overall efficiency of blended organic photovoltaic (OPV) materials by showing that electrons can effectively burrow through a skin layer to get to the device’s cathode. 

OPVs consist of two types of organic molecules, electron donors and electron acceptors, which are uniformly blended throughout the volume of the material. In an OPV, light photoexcites a bound electron-hole pair, which separate at the interface between donor and acceptor.

The separated free charges migrate to different contacts, generating an electrical current. The choice of electrode material is crucial to the operation of the OPV. The cathode must preferentially collect and the anode must preferentially collect holes. 

Recent studies of OPV materials conducted at the CNST and elsewhere revealed a donor-rich hole transporting skin layer near the cathode. 

This phase , or high hole concentration, is due to the smaller surface energy of the donor-cathode interface relative to the acceptor-cathode interface. 

The fact that the electron collector has mostly holes in its vicinity would seem to be an impediment to charge collection and overall efficiency. 

However, the ratio of collected to excited charge is still high. By extending previously developed models to account for macroscopic phase segregation, it was theoretically determined that charges can rather easily “squeeze” through regions of reduced density.  

This effect explains the relatively benign influence of the skin layer on overall device performance. The work demonstrates that cathode phase segregation should not be an impediment to the development of high efficiency OPVs.

Explore further: 'Nanomotor lithography' answers call for affordable, simpler device manufacturing

More information: Organic photovoltaic bulk heterojunctions with spatially varying composition, P. M. Haney, Journal of Applied Physics 110, 024305 (2011).

add to favorites email to friend print save as pdf

Related Stories

Gravity eases its pull

Nov 04, 2010

(PhysOrg.com) -- Ever since Galileo first dropped his balls off the top of the Tower of Pisa in the late 16th century, gravity has caused a major headache for mathematicians and physicists down the ages.

Recommended for you

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

Self-assembly of layered membranes

Oct 28, 2014

Techniques for creating complex nanostructured materials through self-assembly of molecules have grown increasingly sophisticated. But carrying these techniques to the biological realm has been problematic. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.