Carbon nanotube composites for enzymes and cosmetics

Sep 06, 2011 By Adarsh Sandhu
Cross-section of PMMA resin composite material showing the networks of CNTs on the surfaces of the resin particles. The CNTs are added to induce electrical conductivity. Credit: Toyohashi Tech

Japanese researchers have developed a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including enzymes and cosmetics.

Hiroyuki Muto and colleagues at Japan’s Toyohashi University of Technology (Toyohashi Tech) have developed an innovative method for producing CNT (carbon nano-tube) composite material that only requires 1/100 of the conventional amount of CNT additive to produce electrical conductivity in the composite material.

In this method, CNTs were mixed in an electrolyte solution and added to the composite, where the CNTs were adsorbed onto the surfaces of the resin particles due to electrostatic adsorption. This innovative procedure enabled the production of electrical conducting composites by the addition of a small quantity CNTs.

Importantly, the electrical conductivity of the composite material was easily controlled by changing the amount of electrolyte added to the composite; namely, the concentration of onto the resin particles.

Notably, this approach enables significant reductions in both the production costs and the production time compared with conventional methods for manufacturing conductive resins.

The researchers are confident that adding particles with charged surfaces will enable the production of a wide range of composite materials such as metals, ceramics, and polymers. This method is expected to find applications in the production of enzymes and cosmetics.

Explore further: Semiconductor miniaturisation with 2D nanolattices

Provided by Toyohashi University of Technology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Reinforced racquets and heated wallpaper

May 18, 2006

Extremely conductive, stronger than steel and lighter than aluminum – these are only a few of the amazing properties of carbon nanotubes. An innovative method now enables the "miracle material" to be processed ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.