New salts for chemical soups

August 29, 2011

Organozinc reagents are an important class of organometallic compounds with a wide range of applications. German chemists have developed a novel route for the synthesis of so-called organozinc pivalates in a stable powdered form. They promise to be extremely useful in many industrial contexts.

In order to meet future demands for new pharmaceuticals, innovative materials and , the chemical industry is dependent on the ongoing development of effective methods for the synthesis of complex . Because they are so versatile, organometallic molecules are of special significance in this context. Among these, reagents containing zinc atoms have certain advantages over the corresponding organolithium or -magnesium compounds, as they are compatible with a broader array of .

Ludwig-Maximilians-Universitat Munchen chemists led by Professor Paul Knochel have now developed a simple "one-pot" method for the economical synthesis of organozinc pivalates. Up until now, such functionalized organozinc compounds were only available in liquid form, and were difficult to transport and store due to their susceptibility to degradation upon contact with air or moisture. The new synthetic route permits their formation as salt-stabilized solids, which can easily be recovered in powder form. "In this form, the reagents can be stored in an argon atmosphere for months without loss of activity," says Knochel. "They can even be exposed to air for short periods without risk of degradation or ignition."

One of the most prominent applications for organozinc reagents is their use for the so-called Negishi cross-coupling, a type of reaction that provides a simple means of linking together in a virtually unlimited variety of ways, and earned its discoverer a share of the Nobel Prize for Chemistry in 2010. "The new class of organozinc pivalates makes it possible to employ different solvents in the Negishi cross-coupling reaction and greatly extends the spectrum of coupling partners it can be applied to," says Sebastian Bernhardt, who is the lead author on the new study. "The new contain magnesium salts, which also facilitate the addition of organozinc pivalates to carbonyl groups." This opens the way to their use for a whole series of applications relevant to the industrial manufacture of fine chemicals. The new scheme for synthesis of these is the subject of an international patent application. (suwe)

Explore further: New class of compounds promise better drugs, clean energy

More information: Preparation of Solid Salt-Stabilized Functionalized Organozinc Compounds and their Application to Cross-Coupling and Carbonyl Addition Reactions
Sebastian Bernhardt, Georg Manolikakes, Thomas Kunz, Paul Knochel; Angewandte Chemie International Edition, August, 24, 2011,

Related Stories

New class of compounds promise better drugs, clean energy

February 28, 2006

By combining a common organic compound with a rare metal, a team of Brown University chemists has created a new class of molecules that have potentially important applications for the pharmaceutical, chemical and energy industries.

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.