Pathogen research inspires robotics design for medicine and military

Aug 02, 2011

A pathogen that attacks the small intestines of humans and animals is serving as the inspiration for developing robots that can fight disease and aid in military operations.

Mingjun Zhang, associate professor in mechanical, aerospace and , at the University of Tennessee, Knoxville, and his team have made significant findings about the swimming and attachment of the microorganism Giardia. Giardia causes one of the most common in the world, giardiasis. For 250 years, scientists have tried to understand how the microorganism is able to attach to a multitude of surfaces and swim in harsh environments—enabling it to infect many kinds of species while most parasites have specific hosts. Zhang and his team have made significant progress to solve the puzzle.

"We found each of the four pairs of flagella conducts different functions," Zhang said of some of the team's findings. "This is amazing considering the length of the flagella is only about eight to 12 micrometers each, with a diameter of a few hundred nanometers."

The team's discovery can aid in fighting the pathogen's attack and others like it. The discovery may help to develop a way to block its attachment in the human intestine as an alternative for treating the disease. The discovery may also lead to bio-inspired swimming micro-robots for nanomedicine, such as site-specific controlled drug delivery and less invasive surgical procedures. For instance, micro-robots can navigate through the body to break up kidney stones, deliver drugs to specific sites after injection and reduce the invasiveness of surgery.

On a larger scale, knowing Giardia's inner workings may buoy an energy-efficient propulsion system for underwater vehicles or designs for quick turn and agile control of underwater vehicles. The findings of Giardia's unique attachment and landing procedures may also inspire a more accurate and quick surface attachment mechanism.

"Giardia seems to be one of the most sophisticated swimming microorganisms and is very efficient and intelligent in terms of controlling its swimming behavior and energy utilization," Zhang said. "It is a source rife with bio-inspiration and innovation."

Explore further: New 3-D method improves the study of proteins

Related Stories

Giardia genome unlocked

Sep 27, 2007

Giardia lamblia, one of the most common human parasites in the United States, causes more than 20,000 intestinal infections a year, often through contact with contaminated drinking or swimming water. In the September 28 iss ...

Recommended for you

New 3-D method improves the study of proteins

5 hours ago

Researchers have developed a new computational method called AGGRESCAN3D which will allow studying the 3D structure of folded globular proteins and substantially improve the prediction of any propensity for ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.