Hubble to target 'hot jupiters'

Aug 22, 2011 By Daniel Stolte
Artist's impression of a scorching "Hot Jupiter" orbiting its parent star at close range (Illustration: NASA)

(PhysOrg.com) -- An international team of astronomers led by a former UA graduate student has set out on the largest program to date exploring the alien atmospheres of "Hot Jupiters" - massive planets in solar systems far away from our own.

An international team of scientists has secured a large program of nearly 200 hours of observing time with NASA's Hubble Space Telescope to explore the of , known as exoplanets.

The research will focus on "," exoplanets similar in size to Jupiter, but with temperatures of 1,000 degrees Kelvin (1,340 degrees Fahrenheit) or more because they orbit so closely to their respective stars.

Large programs using the Hubble Space Telescope historically have led to data sets with a lasting legacy. The team is led by David Sing, who obtained his doctorate at the University of Arizona working in the departments of physics, astronomy and planetary sciences and is now at the University of Exeter in the U.K.

Gilda Ballester, an associate staff scientist at the UA's Lunar and Planetary Laboratory who is one of the researchers participating in the project, said securing an observation program of this magnitude is an outstanding feat for a researcher at the beginning of his career.

"Data gathered using the Hubble Space Telescope will tell us more than ever before about the of these planets outside our ," Ballester said. "So far, only two have been observed in some detail in the visible light spectrum with Hubble."

"We are going to study eight, exploring for the first time the full diversity of Hot Jupiter atmospheres and identify important physical processes common to the entire class of these planets."

The planets to which the team will point Hubble vary in mass (from one-fifth to one and one-half times the mass of Jupiter), radius (one to twice that of Jupiter) and temperature (1,300 to 4,600 degrees Fahrenheit).

According to Ballester, Hot Jupiters orbit their star at very close range, and their rotation is synchronous to their orbit, meaning the same side always faces the star, much like the moon always points the same side at the Earth.

This makes for a lot of heating and for interesting dynamics, for example how the intense energy streaming onto the planet's exposed side is distributed around the planet.

If the Earth orbited the sun as closely as a typical Hot Jupiter, the star would dominate the sky to an imaginary observer looking up from the planet's point closest to the star. The opposite side would be plunged in eternal darkness.

Ballester said the typical distance of a Hot Jupiter to its star is a mere 2 to 5 one-hundredths of the distance between the Earth and the sun. And unlike Earth, which takes a year to complete its orbit around the sun, Hot Jupiters complete the journey in only one to five days.

By understanding the chemical make-up of exoplanet atmospheres around eight Hot Jupiters and perfecting the difficult techniques needed to make these precise measurements, the researchers will also help prepare for future searches for life on exoplanets.

Lead researcher Sing said: "Astronomers have now detected hundreds of exoplanets, and we now know that some of these planets have extreme environments, unlike anything in our own solar system. Everything we have discovered so far about these planets has been puzzling so I am expecting the unexpected."

The team aims to use the to detect and understand a mysterious gas in the stratospheres around these planets, causing a similar effect to the ozone layer on Earth. This gas is detectable as it absorbs light from the parent star when the planet passes in front of the star.

"When we observe an exoplanet passing in front of its star, we see it obscure part of the star light, not only with its disc, but also with its surrounding atmosphere," Ballester explained. "The way the atmosphere influences the light passing through tells us about its chemical composition, temperature and other characteristics." 

Ballester added that the UA's Lunar and Planetary Laboratory has a large role in the program, analyzing about 40 percent of the large amounts of data Hubble will send to Earth from its vantage point in space.

Adam Showman, an associate professor at LPL, will model the atmospheric dynamics and thermal profiles. Together, they will mentor a post-doctoral fellow to work on this program.

Extrasolar planets still are shrouded in mystery, Ballester said.

"Some are bigger, some are heavier, some are closer to their stars. And some have what we call a thermal inversion zone, better known as a stratosphere, where temperatures increase with altitude and where the weather tends to be calm. Others don't have a stratosphere and we don't know why."

"Observing and modeling the atmospheres of those is a key to unraveling some of their mysteries."

Explore further: Swarm of microprobes to head for Jupiter

add to favorites email to friend print save as pdf

Related Stories

X-Ray observations of an extrasolar planetary system

Oct 22, 2010

(PhysOrg.com) -- The majority of extra-solar planets (about 278 of them) are more massive than Jupiter. About 20% of this majority group orbit their stars at a distances of less than one-tenth of an astronomical ...

'Hot Jupiter' planets unlikely to have moons

Aug 23, 2010

(PhysOrg.com) -- Planets of the major type so far found outside our solar system are unlikely to have moons, according to new research reported in the August 20 issue of The Astrophysical Journal Letters.

Two more kepler planets confirmed

Aug 08, 2011

Hot on the heels of confirming one Kepler planet, the Hobby-Eberly Telescope announces the confirmation of another planet. Another observatory, the Nordic Optical Telescope, confirms its first Kepler planet ...

An Exoplanet with a Potassium-Rich Atmosphere

Mar 04, 2011

(PhysOrg.com) -- A hot Jupiter - a type of celestial object unknown only fifteen years ago - is a Jupiter-sized exoplanet orbiting so close to its host star that its atmospheric temperature is thought to be ...

Recommended for you

Black hole chokes on a swallowed star

25 minutes ago

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

Swarm of microprobes to head for Jupiter

6 hours ago

A swarm of tiny probes each with a different sensor could be fired into the clouds of Jupiter and grab data as they fall before burning up in the gas giant planet's atmosphere. The probes would last an estimated ...

A recoiling, supermassive black hole

10 hours ago

When galaxies collide, the central supermassive black holes that reside at their cores will end up orbiting one another in a binary pair, at least according to current simulations. Einstein's general theory ...

Chandra celebrates the International Year of Light

Jan 23, 2015

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining ...

Why is Andromeda coming toward us?

Jan 23, 2015

I don't want to alarm you, but there's a massive galaxy heading our way and will collide with us in a few billion years. But aren't most galaxies speeding away? Why is Andromeda on a collision course with ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

hard2grep
not rated yet Aug 22, 2011
Would I be correct in assuming that Jupiter's orbit has changed through the evolution of the solar system?
hard2grep
not rated yet Aug 23, 2011
I imagine it like the action of a lava lamp where it cools and then can absorb more in a plummet to the sun(probably a small one), then it tops off and resists its kiss of the star.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.