Researchers improving GPS accuracy in the 3rd dimension

Aug 17, 2011 by Jessica Orwig

Researchers who are working to fix global positioning system (GPS) errors have devised software to take a more accurate measurement of altitude – particularly in mountainous areas.

The software is still under development, but in initial tests it enabled centimeter-scale GPS positioning – including altitude – as often as 97 percent of the time.

Researchers hope the software will help to improve the vertical accuracy of measurements in potentially hazardous regions at high altitudes, such as areas of soft, loose land that may be prone to landslides. They also claim that their software could be used to measure how quickly glaciers at high altitudes are melting.

The GPS is most commonly known for its ability to provide on-the-spot locations for drivers, but this application is just one of many possible uses, explained Dorota Grejner-Brzezinska, professor of civil and environmental engineering and geodetic science at Ohio State University. As the level of GPS precision increases, so do potential applications for scientific research.

While drivers are generally concerned with tracking their own location in two dimensions on the earth's surface, the third dimension of altitude has always been available through GPS – just with lower accuracy than that of the horizontal coordinates.

Recently, Grejner-Brzezinska and her colleagues from the University of Warmia and Mazury in Poland have developed software that will allow GPS to relay locations to within a few centimeters' accuracy, including altitude. While this high level of precision is not necessary for driving directions, it is necessary for recognizing small shifts in topsoil that may lead to dangerously destructive landslides.

She explained that a lot is going on behind the scenes during a typical use of GPS.

GPS satellites transmit information in the form of radio waves to the GPS receiver held by the user. At the same time, the signals must also travel to at least one other ground-based receiver to obtain a location reference, which allows the user's receiver in turn to accurately calculate its own position in 3D. Before the satellite signals reach the receivers, they must travel through Earth's atmosphere, which results in time delays that affect accuracy.

When the user's receiver and the reference receiver reside at drastically different altitudes, however, each location experiences different amounts of time delay, which complicates matters even further. So, in mountainous regions where height differences can vary greatly over a short distance, acquiring the altitude of locations to within a few centimeters is difficult.

"Time is the heart that drives GPS, so it is important that we have a proficient method that accounts for delays from earth's atmospheric layers," said Grejner-Brzezinska. "It would be ideal for all GPS signals to travel in a straight line directly to their destination, but due to electron interaction and refraction in the lower atmosphere, the signal's path is far from straight," she continued.

Electron interaction and tropospheric refraction effectively re-route the GPS signal, which means that the signal travels an extra distance and requires extra time, said Grejner-Brzezinska.

She and her colleagues looked specifically at troposphere delays – those caused by the lowest level of the atmosphere. Their study can be found in a recent issue of the journal Measurement Science and Technology.

In the past, scientists have tried to account for troposphere delays by using basic models of Earth's atmosphere, said Grejner-Brzezinska. But these models may not fully account for changes in the weather or temperature, which can have a significant effect on the amount of interference the GPS signals experience on their way down to earth.

Not only weather and temperature, but also the height difference between two stations can greatly affect the accuracy of a GPS-based height determination.

Using ground station receivers located in the Carpathian Mountains in Poland – a region known for its steep slopes – the researchers collected GPS information over a 13-hour period.

They looked at two pairs of receivers with different height changes. The first pair was located 72 kilometers apart and had a height difference of 32 meters. The second pair was 66 kilometers apart with a total height difference of 380 meters.

"We figured that the easiest scenario would be provided by the receivers with 32-meter height difference, and the most challenging one with a height difference of 380 meters," said Grejner-Brzezinska.

Using processing software developed originally in Grejner-Brzezinska's lab at Ohio State, and further expanded by her research collaborators at the University of Warmia and Mazury in Poland, the researchers applied three different methods to measure GPS accuracy for the receivers.

The results showed that, out of the three methods of handling tropospheric delay in GPS measurements that were tested, there was one that provided an accurate location, including the height of the receivers, 97 percent of the time.

"Of the three methods we tested, the third and most accurate was also the most complicated," said Grejner-Brzezinska. "This method was developed by our team, and required knowledge of three or four reference stations in order to perform the calculations properly."

The other two methods did not require the use of multiple reference points – just a single one – but their levels of accuracy did not match the third method's positioning capabilities.

Further testing will follow. But this early study shows that GPS accuracy for estimation can be improved, and may lead to the precision estimates that researchers need to analyze, for example, the stability of mountaintops and glaciers with 10-minute temporal resolution.

Explore further: Hand out money with my mobile? I think I'm ready

Related Stories

GPS stations can detect clandestine nuclear tests

Jun 07, 2011

At the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) meeting this week, American researchers are unveiling a new tool for detecting illegal nuclear explosions: the Earth's global positioning system (GPS).

Air Force: Tests didn't include troubled GPS unit

May 17, 2010

(AP) -- The Air Force says it performed no advance testing on the specific type of military GPS receiver that had problems picking up locator signals after a change in ground-control software.

GPS Becomes Ubiquitous

May 08, 2006

GPS – (Global Positioning System) is everywhere these days. Once the jealously guarded domain of the military, it now helps even granny find her way to market.

Recommended for you

Hand out money with my mobile? I think I'm ready

Apr 17, 2014

A service is soon to launch in the UK that will enable us to transfer money to other people using just their name and mobile number. Paym is being hailed as a revolution in banking because you can pay peopl ...

Quantenna promises 10-gigabit Wi-Fi by next year

Apr 16, 2014

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Tech giants look to skies to spread Internet

Apr 16, 2014

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

Apr 16, 2014

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Dish Network denies wrongdoing in $2M settlement

Apr 15, 2014

The state attorney general's office says Dish Network Corp. will reimburse Washington state customers about $2 million for what it calls a deceptive surcharge, but the satellite TV provider denies any wrongdoing.

Netflix's Comcast deal improves quality of video

Apr 14, 2014

Netflix's videos are streaming through Comcast's Internet service at their highest speeds in the past 17 months now that Netflix is paying for a more direct connection to Comcast's network.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

georgejmyersjr
not rated yet Aug 17, 2011
That's fantastic. DARPA claims to have started it (CNN said yesterday reporting hyper jet loss) and the US Navy at Willow Grove, PA claims to have further developed it. I was just there w/ Trimble GPS for "closing archaeology". Yet we use it in warfare, cart before the horse, imho.

More news stories

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...