Antibiotic disrupts termite microflora, reducing fertility, longevity

July 19, 2011

The microbial flora of the termite gut are necessary both for cellulose digestion and normal reproduction, and feeding the insects antibiotics can interfere in these processes, according to a paper in the July issue of the journal Applied and Environmental Microbiology.

“New and effective technologies for the control of social insect pests may be devised as a result of this work,” says corresponding author Rebeca B. Rosengaus of Northeastern University, Boston, MA.
 
In this study, the researchers fed wood and the antibiotic rifampin to an experimental group of termite queens and kings, while feeding wood and water to a control group. The antibiotic treatment permanently reduced the diversity of the microbiota. Although antibiotic-fed queens and kings suffer higher mortality than their control counterparts, the authors do not believe the mortality was due to malnutrition or starvation. Surviving antibiotic-fed queens and kings had reduced rates of oviposition, which resulted in delayed colony growth, and reduced colony fitness. “These results point to the potential for using to control termites and/or other insect pests, while reducing the need to attack them with toxic pesticides,” says Rosengaus.
 
In the paper, the researchers speculate that rifampin reduces fertility and longevity by disrupting mutualistic bacterial partnerships within the hosts. “Given the long coevolutionary history between the gut symbionts and termites, it is likely that these social accrue additional benefits from their microbiota that are unrelated to cellulolytic activity,” they write, noting that in other insects, gut symbionts are known to help in “…detoxification, mediation of disease resistance and immune function, production of volatile compounds that are coopted to function as aggregation or kin recognition pheromones and defensive secretions, and performance of atmospheric nitrogen fixation.”
 
Besides the possibility that the research will lead to methods for curbing termites and other social , it may illuminate the co-evolutionary history of an ancient relationship, says Rosengaus. “These host-microbial interactions likely influence the evolution of multiple life history traits of hosts, including their longevity, behavior, reproductive biology, immunity, and perhaps even the evolution and maintenance of their sociality,” she says.
 
The work might even have relevance to human physiology, says Rosengaus. Hundreds of species of microbe inhabit the human gut, and researchers are beginning to show how the compounds these microbes produce influence our physiology. “Understanding the possible impacts that these microbes have on the physiology of insects—a more tractable animal model—we can make inferences about the multiple roles that human gut microbes have on our physiology,” says Rosengaus. 

Explore further: Critter control, au natural

More information: R.B. Rosengaus, et al., 2011. Disruption of the termite gut microbiota and its prolongued consequences for fitness. Appl. Environ. Micriobiol. 77:4303-4312

Related Stories

Critter control, au natural

August 27, 2009

(PhysOrg.com) -- It’s surprising how much havoc the tiny termite can wreak. Each year infestations of these insects cause an estimated $30 billion in damage to buildings and crops nationwide. Historically, homeowners and ...

Homebound Termites Answer 150-Year-Old Evolution Question

October 5, 2009

(PhysOrg.com) -- Staying at home may have given the very first termite youngsters the best opportunity to rule the colony when their parents were killed by their neighbors. This is according to new research supported by the ...

Antibiotics have long-term impacts on gut flora

November 1, 2010

Short courses of antibiotics can leave normal gut bacteria harbouring antibiotic resistance genes for up to two years after treatment, say scientists writing in the latest issue of Microbiology, published on 3 November.

Antibiotics disrupt gut ecology, metabolism

April 20, 2011

(PhysOrg.com) -- Humans carry several pounds of microbes in our gastro-intestinal tracts. Recent research suggests that this microbial ecosystem plays a variety of critical roles in our health. Now, working in a mouse model, ...

Recommended for you

Plant light sensors came from ancient algae

July 28, 2015

The light-sensing molecules that tell plants whether to germinate, when to flower and which direction to grow were inherited millions of years ago from ancient algae, finds a new study from Duke University.

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.