Research team develops method to produce large sheets of metamaterials

Jun 15, 2011 by Bob Yirka report
Image: Nature Nanotechnology doi:10.1038/nnano.2011.82

(PhysOrg.com) -- In an announcement many have been waiting for, a research team from the University of Illinois, has succeeded in figuring out how to produce metamaterials in a size big enough to be useful. The team, led by John Rogers, professor of materials engineering, describe in a paper published in Nature Nanotechnology, how they used a printing technique to stamp 3-D negative index metamaterials (NIMs) onto plastic or glass. The process could lead to the development of products such as extremely high resolution lenses; or as some hope, an invisibility cloak.

Metamaterials are materials that are able to bend light in ways that cannot; they can do so because they are made of layered materials with very tiny spaces in each layer such that when combined result in a mesh that is able to bend light in desired ways; sort of like taking several screen doors and laying them atop one another slightly out of line. As light hits the different parts of the screen, it is reflected in different directions. With metamaterials, the screen mesh holes are the size of the , which is why until now, no one has been able to figure out how to create them in a size that could actually be used for something other than research.

The new process developed, changes all that. Instead of trying to create the metamaterials directly via etching, a stamp is first created; one that consists of lots of very small peaks and valleys. The stamp is then coated with a layer of a nondescript material that can be removed later, then covered over with layers of silver and magnesium fluoride. The mesh is created by causing just the coating from the peaks on the stamp to adhere to a glass or plastic sheet where the sacrificial layer is removed by etching, leaving just the mesh pattern.

Using this process the team was able to produce metamaterials a few square inches in size, constrained, they write, only by the apparatus they had available in the lab. Rogers reports that he and his team expect to soon produce several orders of magnitude larger.

The design, first envisioned by Xiang Zhang back in 2008, should be able to be used to produce sheets of new metamaterials of almost any size given the right resources, and what’s more should be able to do so in a reasonably economical manner, as the stamps are reusable. More research will still be needed however, before commercial products begin to appear because methods to create just the right kinds of stamps still need to be developed.

Explore further: Thinnest feasible nano-membrane produced

More information: Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing, Nature Nanotechnology (2011) doi:10.1038/nnano.2011.82

Abstract
Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials. Recent work has demonstrated that focused ion beam and layer-by-layer electron-beam lithography can be used to pattern the necessary nanoscale features over small areas (hundreds of µm2) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for ‘inking’ it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm2) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit.

Related Stories

Negative Index Materials: From Theory to Reality

Jun 06, 2006

Kent State University researchers are leading a team of scientists from eight institutions, who have been awarded a $5.5 million Multidisciplinary University Research Initiative (MURI) from the Air Force Office of Scientific ...

Artificial black holes made with metamaterials

Nov 16, 2010

While our direct knowledge of black holes in the universe is limited to what we can observe from thousands or millions of light years away, a team of Chinese physicists has proposed a simple way to design an artificial electromagnetic ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

flashgordon
5 / 5 (1) Jun 15, 2011
I keep hoping somebody comes up with the brilliant idea of using these to cloak out the secondary mirror of a reflector telescope; finally, we can get rid of those star spikes; but, just think, actually, those spikes you see in the stars are at every point of a given astronomy image; get rid of those diffractions at every point, and we have an astronomy imaging revolution!
Dancer
not rated yet Jun 20, 2011
Alternatively - these materials may be designed to replace the current reflector telescope lens with a meta-material lens of better optical quality at a fraction of the size/weight... might require some patience though.

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...