CNST offers insights into metallic ferromagnetism using spin polarized electron probes

Jun 16, 2011

The Center for Nanoscale Science and Technology's Daniel Pierce has provided an overview of three decades of applications of spin-polarized measurement techniques to understanding metallic ferromagnetism.

His insights were published in the in an invited paper for the Magnetism and Magnetic Materials Conference.

The ferromagnetic metals, Fe, Co, Ni, and their alloys dominate technological applications, particularly in electronics and .

Because the ordering of electron spins is at the heart of ferromagnetism, probes that give information about electron spin states have proven particularly useful.

For example, spin polarized photoemission and inverse photoemission spectroscopy have revealed spin-dependent electronic structure, providing excellent tests of spin-dependent band structure calculations.

Measurements of the spin dependence of the electron mean free path have demonstrated the spin filtering effect of ferromagnetic layers used in solid state spintronic devices designed to manipulate spin-polarized currents.

The development of new detectors has facilitated the development of powerful techniques such as with Polarization Analysis (SEMPA), which measures the properties of magnetic nanostructures and has greatly enhanced the understanding of coupling between magnetic multilayers.

Pierce, a NIST Fellow, Emeritus who has worked at NIST (then NBS) since 1975, remains actively engaged in SEMPA measurements in the CNST Electron Physics Group.

Explore further: Chemist develops X-ray vision for quality assurance

More information: Perspective on probing metallic ferromagnetism with electrons, D. T. Pierce, Journal of Applied Physics 109, 07E106 (2011). doi:10.1063/1.3537960

add to favorites email to friend print save as pdf

Related Stories

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Graphene and 'spintronics' combo looks promising

Jan 25, 2011

A team of physicists has taken a big step toward the development of useful graphene spintronic devices. The physicists, from the City University of Hong Kong and the University of Science and Technology of China, present ...

Recommended for you

Chemist develops X-ray vision for quality assurance

2 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

2 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

19 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

21 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

22 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 0