CNST offers insights into metallic ferromagnetism using spin polarized electron probes

Jun 16, 2011

The Center for Nanoscale Science and Technology's Daniel Pierce has provided an overview of three decades of applications of spin-polarized measurement techniques to understanding metallic ferromagnetism.

His insights were published in the in an invited paper for the Magnetism and Magnetic Materials Conference.

The ferromagnetic metals, Fe, Co, Ni, and their alloys dominate technological applications, particularly in electronics and .

Because the ordering of electron spins is at the heart of ferromagnetism, probes that give information about electron spin states have proven particularly useful.

For example, spin polarized photoemission and inverse photoemission spectroscopy have revealed spin-dependent electronic structure, providing excellent tests of spin-dependent band structure calculations.

Measurements of the spin dependence of the electron mean free path have demonstrated the spin filtering effect of ferromagnetic layers used in solid state spintronic devices designed to manipulate spin-polarized currents.

The development of new detectors has facilitated the development of powerful techniques such as with Polarization Analysis (SEMPA), which measures the properties of magnetic nanostructures and has greatly enhanced the understanding of coupling between magnetic multilayers.

Pierce, a NIST Fellow, Emeritus who has worked at NIST (then NBS) since 1975, remains actively engaged in SEMPA measurements in the CNST Electron Physics Group.

Explore further: Galaxy dust findings confound view of early Universe

More information: Perspective on probing metallic ferromagnetism with electrons, D. T. Pierce, Journal of Applied Physics 109, 07E106 (2011). doi:10.1063/1.3537960

add to favorites email to friend print save as pdf

Related Stories

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Graphene and 'spintronics' combo looks promising

Jan 25, 2011

A team of physicists has taken a big step toward the development of useful graphene spintronic devices. The physicists, from the City University of Hong Kong and the University of Science and Technology of China, present ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.