CNST offers insights into metallic ferromagnetism using spin polarized electron probes

Jun 16, 2011

The Center for Nanoscale Science and Technology's Daniel Pierce has provided an overview of three decades of applications of spin-polarized measurement techniques to understanding metallic ferromagnetism.

His insights were published in the in an invited paper for the Magnetism and Magnetic Materials Conference.

The ferromagnetic metals, Fe, Co, Ni, and their alloys dominate technological applications, particularly in electronics and .

Because the ordering of electron spins is at the heart of ferromagnetism, probes that give information about electron spin states have proven particularly useful.

For example, spin polarized photoemission and inverse photoemission spectroscopy have revealed spin-dependent electronic structure, providing excellent tests of spin-dependent band structure calculations.

Measurements of the spin dependence of the electron mean free path have demonstrated the spin filtering effect of ferromagnetic layers used in solid state spintronic devices designed to manipulate spin-polarized currents.

The development of new detectors has facilitated the development of powerful techniques such as with Polarization Analysis (SEMPA), which measures the properties of magnetic nanostructures and has greatly enhanced the understanding of coupling between magnetic multilayers.

Pierce, a NIST Fellow, Emeritus who has worked at NIST (then NBS) since 1975, remains actively engaged in SEMPA measurements in the CNST Electron Physics Group.

Explore further: Experiments reveal a neutron halo around neutron-rich magnesium nuclei

More information: Perspective on probing metallic ferromagnetism with electrons, D. T. Pierce, Journal of Applied Physics 109, 07E106 (2011). doi:10.1063/1.3537960

add to favorites email to friend print save as pdf

Related Stories

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Graphene and 'spintronics' combo looks promising

Jan 25, 2011

A team of physicists has taken a big step toward the development of useful graphene spintronic devices. The physicists, from the City University of Hong Kong and the University of Science and Technology of China, present ...

Recommended for you

Watching the structure of glass under pressure

18 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

21 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

22 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0