How cells' sensing hairs are made

Jun 08, 2011

(PhysOrg.com) -- Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from UC Davis published this week in the journal Nature Cell Biology provides new insights into how these cilia are assembled.

"It's a basic discovery, but with implications for understanding disease," said Jonathan Scholey, professor of at UC Davis and senior author of the study. Understanding how cilia are assembled and function can help scientists understand how conditions such as polycystic kidney disease and some growth and development disorders arise.

Cilia are built from bundles of made of a protein called tubulin. Scholey's team discovered how two subunits of tubulin are winched into place by a type of protein motor belonging to a family of proteins called kinesins.

Scholey's laboratory works with the soil roundworm Caenorhabditis elegans, whose cilia are essentially the same as those of humans and other mammals. Postdoctoral scholar Limin Hao, Scholey and their colleagues screened a collection of worms for those with mutations that affected the cilia.

They found two genes which, when mutated, caused worms to lose the tips of their cilia. Both genes turned out to be subunits of tubulin that are assembled into different parts of the microtubule: one is found all along the microtubule, and the other is concentrated at the tip.

The UC Davis team used a combination of , and computer modeling to study these two proteins. They found that both are moved into position by so-called kinesin-2 motors.

At one time, researchers had seen cilia as purely for movement, either moving a swimming cell through a fluid or moving fluid and suspended particles over the cell's surface, Scholey said.

But in the late 1990s, researchers discovered that cilia were also involved in detecting signaling molecules that control gene expression and cell behavior. This signaling is vital for coordinating cell growth and the orderly development of tissues, for example in establishing left/right asymmetry in developing embryos.

"Recent work shows that cilia are ubiquitous in signaling," Scholey said. In earlier work, Scholey's lab linked a defect in the kinesins that assemble cilia to Bardet-Biedl disease, which causes blindness, and learning difficulties.

Explore further: Fighting bacteria—with viruses

Provided by University of California - Davis

not rated yet

Related Stories

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Researchers identify new role for cilia protein in mitosis

Apr 04, 2011

Researchers at the University of Massachusetts Medical School have described a previously unknown role for the cilia protein IFT88 in mitosis, the process by which a dividing cell separates its chromosomes containing the ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0