How cells' sensing hairs are made

June 8, 2011

( -- Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from UC Davis published this week in the journal Nature Cell Biology provides new insights into how these cilia are assembled.

"It's a basic discovery, but with implications for understanding disease," said Jonathan Scholey, professor of at UC Davis and senior author of the study. Understanding how cilia are assembled and function can help scientists understand how conditions such as polycystic kidney disease and some growth and development disorders arise.

Cilia are built from bundles of made of a protein called tubulin. Scholey's team discovered how two subunits of tubulin are winched into place by a type of protein motor belonging to a family of proteins called kinesins.

Scholey's laboratory works with the soil roundworm Caenorhabditis elegans, whose cilia are essentially the same as those of humans and other mammals. Postdoctoral scholar Limin Hao, Scholey and their colleagues screened a collection of worms for those with mutations that affected the cilia.

They found two genes which, when mutated, caused worms to lose the tips of their cilia. Both genes turned out to be subunits of tubulin that are assembled into different parts of the microtubule: one is found all along the microtubule, and the other is concentrated at the tip.

The UC Davis team used a combination of , and computer modeling to study these two proteins. They found that both are moved into position by so-called kinesin-2 motors.

At one time, researchers had seen cilia as purely for movement, either moving a swimming cell through a fluid or moving fluid and suspended particles over the cell's surface, Scholey said.

But in the late 1990s, researchers discovered that cilia were also involved in detecting signaling molecules that control gene expression and cell behavior. This signaling is vital for coordinating cell growth and the orderly development of tissues, for example in establishing left/right asymmetry in developing embryos.

"Recent work shows that cilia are ubiquitous in signaling," Scholey said. In earlier work, Scholey's lab linked a defect in the kinesins that assemble cilia to Bardet-Biedl disease, which causes blindness, and learning difficulties.

Explore further: Scientists study cilia -- microscopic hair

Related Stories

Scientists study cilia -- microscopic hair

May 5, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Primary cilium as cellular 'GPS system' crucial to wound repair

December 17, 2008

The primary cilium, the solitary, antenna-like structure that studs the outer surfaces of virtually all human cells, orient cells to move in the right direction and at the speed needed to heal wounds, much like a Global Positioning ...

Researchers identify new role for cilia protein in mitosis

April 4, 2011

Researchers at the University of Massachusetts Medical School have described a previously unknown role for the cilia protein IFT88 in mitosis, the process by which a dividing cell separates its chromosomes containing the ...

Recommended for you

Scientists use CRISPR technology to edit crop genes

November 30, 2015

CRISPR gene-editing is allowing rapid scientific advances in many fields, including human health and now it has been shown that crop research can also benefit from this latest exciting technology.

Red clover genome to help restore sustainable farming

November 30, 2015

The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop. The genome is published in Scientific ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.