The sweet mysteries of the nervous system

May 10, 2011
Two types of stem cells were stained with the new Bochum antibody 5750 (red) and the conventional antibody 487 (green). They can be clearly separated, since the antibodies recognise different LewisX sugar residues. (c) American Society for Biochemistry and Molecular Biology. Credit: RUB

Researchers in Germany have produced an antibody that allows them to distinguish the numerous types of stem cells in the nervous system better than before.

"In order to use stem cells for therapeutic purposes, it is important to be able to distinguish between the different types", explained Eva Hennen of the RUB Department of and Molecular Neurobiology (Faculty of Biology and Biotechnology).

The antibody 5750 recognises a specific sugar residue on the cell surface, which is called LewisX. The research group lead by Prof. Dr. Andreas Faissner has now been able to use LewisX for the first time to separate different types of stem cells. The researchers report on their results in the .

Unexpected sugar diversity

Antibodies that recognise the LewisX sugar residue are used routinely to identify so-called neural stem cells from which the various cells of the nervous system originate. Prof. Faissner's team has now shown that the designation "LewisX" does not just cover a single sugar motif, but a whole range of different sugar residues. Different types of neural stem cells are equipped with individual combinations of LewisX sugar residues on their cell surface. The new Bochum antibody 5750 recognises a different LewisX sugar residue to the antibodies previously used. "This sugar diversity could also be interesting for " Prof. Faissner explained, "because LewisX sugars have also been detected on ".

Identifying properties of stem cells

With the aid of the new antibody 5750, certain types of can be isolated from a mixture of different cell types. The aim of Prof. Faissner's research group is now to examine the properties of the stem cells which carry the LewisX sugar residues. The researchers have already found out that the LewisX motif on the changes when the stem cells develop further – for example into oligodendrocytes, which form the insulation layer of the nerve cells, or into nerve cells themselves.

Explore further: New tool identifies therapeutic proteins in a 'snap'

More information: Hennen E, Czopka T, Faissner A (2011) Structurally Distinct LewisX Glycans Distinguish Subpopulations of Neural Stem/Progenitor Cells. The Journal of Biological Chemistry 286: 16321-16331. doi 10.1074/jbc.M110.201095

Provided by Ruhr-University Bochum

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Sweet success for new stem cell ID trick

Nov 20, 2008

(PhysOrg.com) -- Biomaterial scientists in Manchester believe they have found a new way of isolating the ‘ingredients’ needed for potential stem cell treatments for nerve damage and heart disease.

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

When is a stem cell not really a stem cell?

Aug 26, 2007

Working with embryonic mouse brains, a team of Johns Hopkins scientists seems to have discovered an almost-too-easy way to distinguish between “true” neural stem cells and similar, but less potent versions. Their finding, ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0