Researchers create nanopatch for the heart

May 19, 2011
Engineers at Brown University have created a nanopatch for the heart that tests show restores areas that have been damaged, such as from a heart attack. Credit: Frank Mullin, Brown University

When you suffer a heart attack, a part of your heart dies. Nerve cells in the heart's wall and a special class of cells that spontaneously expand and contract – keeping the heart beating in perfect synchronicity – are lost forever. Surgeons can't repair the affected area. It's as if when confronted with a road riddled with potholes, you abandon what's there and build a new road instead.

Needless to say, this is a grossly inefficient way to treat arguably the single most important organ in the human body. The best approach would be to figure out how to resuscitate the deadened area, and in this quest, a group of researchers at Brown University and in India may have an answer.

The scientists turned to nanotechnology. In a lab, they built a scaffold-looking structure consisting of carbon nanofibers and a government-approved polymer. Tests showed the synthetic nanopatch regenerated natural tissue cells ­– called cardiomyocytes – as well as neurons. In short, the tests showed that a dead region of the heart can be brought back to life.

"This whole idea is to put something where dead tissue is to help regenerate it, so that you eventually have a healthy heart," said David Stout, a graduate student in the School of Engineering at Brown and the lead author of the paper published in .

The approach, if successful, would help millions of people. In 2009, some 785,000 Americans suffered a new linked to weakness caused by the scarred cardiac muscle from a previous heart attack, according to the American Heart Association. Just as ominously, a third of women and a fifth of men who have experienced a heart attack will have another one within six years, the researchers added, citing the American Heart Association.

What is unique about the experiments at Brown and at the India Institute of Technology Kanpur is the engineers employed carbon nanofibers, helical-shaped tubes with diameters between 60 and 200 nanometers. The carbon nanofibers work well because they are excellent conductors of electrons, performing the kind of electrical connections the heart relies upon for keeping a steady beat. The researchers stitched the nanofibers together using a poly lactic-co-glycolic acid polymer to form a mesh about 22 millimeters long and 15 microns thick and resembling "a black Band Aid," Stout said. They laid the mesh on a glass substrate to test whether cardiomyocytes would colonize the surface and grow more cells.

In tests with the 200-nanometer-diameter carbon nanofibers seeded with cardiomyocytes, five times as many heart-tissue cells colonized the surface after four hours than with a control sample consisting of the polymer only. After five days, the density of the surface was six times greater than the control sample, the researchers reported. Neuron density had also doubled after four days, they added.

The scaffold works because it is elastic and durable, and can thus expand and contract much like heart tissue, said Thomas Webster, associate professor in engineering and orthopaedics at Brown and the corresponding author on the paper. It's because of these properties and the carbon nanofibers that cardiomyocytes and neurons congregate on the scaffold and spawn new cells, in effect regenerating the area.

The scientists want to tweak the scaffold pattern to better mimic the electrical current of the heart, as well as build an in-vitro model to test how the material reacts to the heart's voltage and beat regime. They also want to make sure the cardiomyocytes that grow on the scaffolds are endowed with the same abilities as other heart-tissue cells.

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

Related Stories

Scientists overcome obstacles to stem cell heart repair

Dec 13, 2007

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at Imperial College London have overcome two significant obstacles on the road to harnessing stem cells to build patches ...

Adult pig stem cells repair heart damage

Nov 14, 2006

U.S. scientists have successfully grown large numbers of stem cells from adult pigs' heart tissue and used the cells to repair heart attack damage.

Newborn heart muscle can grow back by itself

Feb 24, 2011

In a promising science-fiction-meets-real-world juxtaposition, researchers at UT Southwestern Medical Center have discovered that the mammalian newborn heart can heal itself completely.

Recommended for you

Graphene surfaces on photonic racetracks

20 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

20 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

21 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
not rated yet May 19, 2011
Damn! Pass the chips! With this and gastric bypass, who needs to eat healthy?
spectator
not rated yet May 19, 2011
The approach, if successful, would help millions of people.


Understatement of the century.

If this technology is fully developed and becomes affordable, then this could potentially extend average human life span in developed nations by decades, if not longer.

Imagine a time when something like this could be mass produced just like an ordinary band-aid, in assorted shapes and sizes, and implanted on anyone suspected of a heart attack, in a minimally invasive surgery.