In Brief: Nanodots to the rescue

May 11, 2011

By applying the magnetic properties of iron nanodots to complex materials, a research team has overcome an obstacle to getting ultra-thin or highly strained films to perform on par with their bulk counterparts.

If the researchers are indeed successful, this work sets the stage for these exotic materials to be used in a wide range of fascinating and potentially technologically revolutionary applications, said Oak Ridge National Laboratory's Zac Ward, lead author of a paper published in .

The problem lies in the fact that at low dimensions or when the material is under strain it loses the characteristics that make it valuable for use in nano-scale electronics.

"What we discovered is a way to activate these materials using the of iron nanodots to control the electron spin and tune the behavior," Ward said.

Explore further: New absorber will lead to better biosensors

More information: Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots, Phys. Rev. Lett. 106, 157207 (2011) DOI:10.1103/PhysRevLett.106.157207

Abstract
In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

add to favorites email to friend print save as pdf

Related Stories

Highlight: Exploiting strain fields

Dec 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

Unexpected magnetism discovered

Oct 18, 2010

Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

Recommended for you

New absorber will lead to better biosensors

just added

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

Ultrafast remote switching of light emission

20 hours ago

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Nanotube cathode beats large, pricey laser

Sep 30, 2014

Scientists are a step closer to building an intense electron beam source without a laser. Using the High-Brightness Electron Source Lab at DOE's Fermi National Accelerator Laboratory, a team led by scientist ...

User comments : 0