In Brief: Nanodots to the rescue

May 11, 2011

By applying the magnetic properties of iron nanodots to complex materials, a research team has overcome an obstacle to getting ultra-thin or highly strained films to perform on par with their bulk counterparts.

If the researchers are indeed successful, this work sets the stage for these exotic materials to be used in a wide range of fascinating and potentially technologically revolutionary applications, said Oak Ridge National Laboratory's Zac Ward, lead author of a paper published in .

The problem lies in the fact that at low dimensions or when the material is under strain it loses the characteristics that make it valuable for use in nano-scale electronics.

"What we discovered is a way to activate these materials using the of iron nanodots to control the electron spin and tune the behavior," Ward said.

Explore further: Engineers discover new method to determine surface properties at the nanoscale

More information: Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots, Phys. Rev. Lett. 106, 157207 (2011) DOI:10.1103/PhysRevLett.106.157207

Abstract
In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

add to favorites email to friend print save as pdf

Related Stories

Highlight: Exploiting strain fields

Dec 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

Unexpected magnetism discovered

Oct 18, 2010

Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

Recommended for you

New 2-D quantum materials for nanoelectronics

11 hours ago

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

Thin film produces new chemistry in 'nanoreactor'

Nov 19, 2014

Physicists of the University of Groningen and the FOM Foundation, led by professor Beatriz Noheda, have discovered a new manganese compound that is produced by tension in the crystal structure of terbium manganese oxide. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.