In Brief: Nanodots to the rescue

May 11, 2011

By applying the magnetic properties of iron nanodots to complex materials, a research team has overcome an obstacle to getting ultra-thin or highly strained films to perform on par with their bulk counterparts.

If the researchers are indeed successful, this work sets the stage for these exotic materials to be used in a wide range of fascinating and potentially technologically revolutionary applications, said Oak Ridge National Laboratory's Zac Ward, lead author of a paper published in .

The problem lies in the fact that at low dimensions or when the material is under strain it loses the characteristics that make it valuable for use in nano-scale electronics.

"What we discovered is a way to activate these materials using the of iron nanodots to control the electron spin and tune the behavior," Ward said.

Explore further: Formation of ultrahigh density Ge nanodots on oxidized Ge/Si(111)

More information: Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots, Phys. Rev. Lett. 106, 157207 (2011) DOI:10.1103/PhysRevLett.106.157207

In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

Related Stories

Highlight: Exploiting strain fields

December 10, 2009

( -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

Unexpected magnetism discovered

October 18, 2010

Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.