Major step toward less energy loss in new electromagnetic materials

March 3, 2009,

From physics to mateial analysis and reduced energy losses in society
(PhysOrg.com) -- Researchers at Uppsala University have managed for the first time to measure magnetic properties in new materials quantitatively with the help of electron microscopy - with unparalleled precision. The secret behind the breakthrough is a successful elaboration of electron microscope technology. The findings, published in the scientific journal Physical Review Letters, means that the energy loss entailed in all electromagnetic materials can ultimately be minimized.

Apace with the miniaturization of electronic components, new methods are needed to analyze the properties of materials down to the atomic level. In 2006 a scientific article showed that it is possible to use a transmission electron microscope to study the magnetic properties of a material, using a technique called "Electron Magnetic Circular Dichroism," (EMCD). As different materials are combined, often in thin atomic monolayer films, exciting new magnetic properties are created. This is an interesting research field that is used in hard drives, for example. Today scientists are primarily studying magnetic properties with the aid of an extremely expensive synchrotron light source, whereas EMCD affords a cheaper and considerably more detailed study of the magnetic properties of each layer down to one nanometer.

Until now it has only been shown that EMCD works qualitatively. The Uppsala University researchers have further elaborated the technology to enable it to measure the magnetic forces of the sample quantitatively as well.

"This means we can put a number on the magnetic strength of the sample, which is key to understanding how various materials interact," says Klaus Leifer, professor of experimental physics at the Department of Engineering Sciences.

By combining practical experiments and theoretical calculations, the method of measuring the EMCD signal has now been optimized and the computer processing of the experimental data further developed. The article is the result of collaborative work involving researchers in materials theory, physical materials synthesis, and experimental physics.

These findings are important for our ability to analyze the magnetic properties of a material using equipment that is standard in most electron microscopy laboratories today.

"The technology will also enhance our knowledge of the energy losses that occur in magnetic components in generators and transformers," says Klaus Leifer.

More information: Read the article on the Physical Review Letters Web site.

Provided by Uppsala University

Explore further: Superconductivity and ferromagnetism fight an even match

Related Stories

Superconductivity and ferromagnetism fight an even match

October 12, 2018

Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. In their paper published in Science Advances, ...

Graphene controls surface magnetism at room temperature

October 8, 2018

In a refreshing change of perspective, theoretical physicist Dr. Zeila Zanolli has looked at the proximity effects of graphene on a magnetic semiconducting substrate, finding it to affect the substrate's magnetism down to ...

Three renowned scientists: Heusler, Weyl and Berry

October 10, 2018

Scientists at the Max Planck Institute Chemical Physics of Solids have written a review paper about magnetic topological materials in the family of Heusler compounds. The review explains the connection between topology, symmetry ...

'Fudge factors' in physics?

October 11, 2018

Science is poised to take a "quantum leap" as more mysteries of how atoms behave and interact with each other are unlocked.

New NSLS-II beamline illuminates electronic structures

October 11, 2018

On July 15, 2018, the Soft Inelastic X-ray Scattering (SIX) beamline at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—welcomed ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Pharago
3 / 5 (1) Mar 04, 2009
awesome
BrianH
not rated yet Mar 04, 2009
Argh! The 'more information' Scitation link won't let me see the original!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.