New map of cosmic rays in the Southern sky presented at physics meeting

May 03, 2011

For the first time, scientists have an almost complete sky map of high-energy cosmic rays.

While waiting for construction of the Neutrino Observatory to be completed at the South Pole, researchers there have been mapping cosmic rays in the . They discovered an excess of cosmic rays coming from certain directions in the sky.

The research was presented at the American Physical Society’s April Meeting in Anaheim, Calif., Saturday, April 30.

“We have observed that these cosmic rays come preferentially from certain parts of the sky, and this is the first time that such an
observation is done in the southern sky,” said Marcos Santander, of the University of Wisconsin-Madison. The excess, called an anisotropy,
mimics one already observed in the Northern Hemisphere. Santander will speak about their discovery of anisotropies in the southern sky at the
April Meeting.

When high energy collide with atoms in the Earth’s atmosphere, they produce elementary particles called muons. Though
IceCube was built to detect astrophysical neutrinos, it can also detect these cosmic ray-produced muons, finding tens of billions of them each
year. Scientists say these high concentrations shouldn’t exist and are working to understand their sources. Analyzing this new data may help to
determine the origins of these anisotropies.

The construction of IceCube at the geographic was completed in December. The experiment is designed to use one cubic kilometer of Antarctic ice as a subatomic particle detector of neutrinos or other difficult-to-detect elementary particles.

Explore further: Cold Atom Laboratory creates atomic dance

More information: Observation of a cosmic ray anisotropy in the southern sky with IceCube, meetings.aps.org/Meeting/APR11/Event/145730

Abstract
IceCube is a kilometer-scale neutrino telescope currently in the final stages of its construction at the geographic South Pole. When complete, the detector will consist of 5160 Digital Optical Modules (DOMs) deployed at depths between 1.5 and 2.5 km over an instrumented volume of 1 km$^3$. Although the main scientific goal of IceCube is the detection of astrophysical neutrinos, it also detects tens of billions of muons per year, which are produced by the interaction of TeV cosmic rays with the Earth's atmosphere. Such a high level of statistics has allowed us to probe, for the very first time, the southern sky for anisotropies in the arrival direction of cosmic rays in this energy range. We report on the discovery of a cosmic ray anisotropy over a wide range of angular scales in the sky, which is consistent with anisotropies previously observed in the northern sky by other experiments.

Provided by American Physical Society

5 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

IceCube spies unexplained pattern of cosmic rays

Jul 27, 2010

(PhysOrg.com) -- Though still under construction, the IceCube Neutrino Observatory at the South Pole is already delivering scientific results - including an early finding about a phenomenon the telescope was ...

Antarctic "Telescopes" Look for Cosmic Rays

Feb 08, 2005

Working in the harsh conditions of Antarctica, Maryland researchers are creating new ways of detecting cosmic rays, high energy particles that bombard the Earth from beyond our solar system.

IceCube neutrino observatory nears completion

Aug 31, 2010

In December 2010, IceCube -- the world's first kilometer-scale neutrino observatory, which is located beneath the Antarctic ice -- will finally be completed after two decades of planning. In an article in ...

IceCube researchers come up empty on first neutrino test

Apr 15, 2011

(PhysOrg.com) -- Physicist Nathan Whitehorn and a team of researchers with the IceCube collaboration have failed to come up with evidence to prove that neutrinos come from, or are caused by, gamma ray bursts, ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

4 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

4 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

5 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0