New map of cosmic rays in the Southern sky presented at physics meeting

May 03, 2011

For the first time, scientists have an almost complete sky map of high-energy cosmic rays.

While waiting for construction of the Neutrino Observatory to be completed at the South Pole, researchers there have been mapping cosmic rays in the . They discovered an excess of cosmic rays coming from certain directions in the sky.

The research was presented at the American Physical Society’s April Meeting in Anaheim, Calif., Saturday, April 30.

“We have observed that these cosmic rays come preferentially from certain parts of the sky, and this is the first time that such an
observation is done in the southern sky,” said Marcos Santander, of the University of Wisconsin-Madison. The excess, called an anisotropy,
mimics one already observed in the Northern Hemisphere. Santander will speak about their discovery of anisotropies in the southern sky at the
April Meeting.

When high energy collide with atoms in the Earth’s atmosphere, they produce elementary particles called muons. Though
IceCube was built to detect astrophysical neutrinos, it can also detect these cosmic ray-produced muons, finding tens of billions of them each
year. Scientists say these high concentrations shouldn’t exist and are working to understand their sources. Analyzing this new data may help to
determine the origins of these anisotropies.

The construction of IceCube at the geographic was completed in December. The experiment is designed to use one cubic kilometer of Antarctic ice as a subatomic particle detector of neutrinos or other difficult-to-detect elementary particles.

Explore further: New insights found in black hole collisions

More information: Observation of a cosmic ray anisotropy in the southern sky with IceCube, meetings.aps.org/Meeting/APR11/Event/145730

Abstract
IceCube is a kilometer-scale neutrino telescope currently in the final stages of its construction at the geographic South Pole. When complete, the detector will consist of 5160 Digital Optical Modules (DOMs) deployed at depths between 1.5 and 2.5 km over an instrumented volume of 1 km$^3$. Although the main scientific goal of IceCube is the detection of astrophysical neutrinos, it also detects tens of billions of muons per year, which are produced by the interaction of TeV cosmic rays with the Earth's atmosphere. Such a high level of statistics has allowed us to probe, for the very first time, the southern sky for anisotropies in the arrival direction of cosmic rays in this energy range. We report on the discovery of a cosmic ray anisotropy over a wide range of angular scales in the sky, which is consistent with anisotropies previously observed in the northern sky by other experiments.

Provided by American Physical Society

5 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

IceCube spies unexplained pattern of cosmic rays

Jul 27, 2010

(PhysOrg.com) -- Though still under construction, the IceCube Neutrino Observatory at the South Pole is already delivering scientific results - including an early finding about a phenomenon the telescope was ...

Antarctic "Telescopes" Look for Cosmic Rays

Feb 08, 2005

Working in the harsh conditions of Antarctica, Maryland researchers are creating new ways of detecting cosmic rays, high energy particles that bombard the Earth from beyond our solar system.

IceCube neutrino observatory nears completion

Aug 31, 2010

In December 2010, IceCube -- the world's first kilometer-scale neutrino observatory, which is located beneath the Antarctic ice -- will finally be completed after two decades of planning. In an article in ...

IceCube researchers come up empty on first neutrino test

Apr 15, 2011

(PhysOrg.com) -- Physicist Nathan Whitehorn and a team of researchers with the IceCube collaboration have failed to come up with evidence to prove that neutrinos come from, or are caused by, gamma ray bursts, ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.