RIKEN, JASRI unveil 'SACLA', Japan's first X-ray free electron laser

Apr 11, 2011
This is the SACLA logo. Credit: RIKEN

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have cut the ribbon on a new cutting-edge X-ray Free Electron Laser (XFEL) facility in Harima, the first such facility in Japan and only the second in the whole world. Nicknamed "SACLA" (SPring-8 Angstrom Compact Free Electron Laser), the new XFEL's intense beams will open a unique window onto the minuscule structure of molecules and rapid reaction of chemical species.

When researchers study objects on the , they are confronted with a fundamental limitation: they cannot "see" anything smaller than the of they use. The new XFEL promises to overcome this limitation with light of a wavelength and intensity like none ever produced before, enabling researchers for the first time to directly observe individual atoms and molecules.

To check that the XFEL is functioning properly and indeed producing this "dream beam", researchers at SACLA conducted a series of tests on various aspects of the new facility. While confirming the beam's expected intensity, the tests also indicated that the beam's wavelength, at 0.8Å (angstroms) or one ten-millionth of a millimeter, was right on the mark. Acceleration of the beam successfully reached a full 7.8 GeV, just shy of the target energy of 8 GeV.

The success of these initial tests marks the first step toward realizing the dream of Angstrom-scale measurements of atomic and molecular structure, setting the stage for full-scale experiments using the new XFEL. The success is also a triumph for Japanese craftsmanship, given that many of the components for SACLA were independently designed and built by Japanese manufacturers.

Pronounced "sa-cu-ra" and meaning "cherry blossom" in Japanese, the facility's name commemorates these Japanese origins, while its logo symbolizes, among other things, the "8" GeV of energy it will generate once operating at full capacity. With shared use of the new facility scheduled for the end of fiscal 2011, it will not be long before researchers begin using SACLA to push the boundaries of scientific knowledge, heralding a new era of exploration and discovery.

Explore further: Star power: Troubled ITER nuclear fusion project looks for new path

Related Stories

China to Participate in the European X-ray Laser Project XFEL

Nov 25, 2005

Within the framework of the meeting of the international XFEL Steering Committee in Berlin, today two representatives of the People's Republic of China's Ministry of Science and Technology signed the Memorandum of Understanding ...

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

21 hours ago

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

23 hours ago

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

Amazing microdroplet structures may lead to new technologies

May 20, 2015

Unexpected shapes of mesoscale atoms—structures built of microdroplets encapsulated within microdroplets—have been created at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.