Miniature invisibility 'carpet cloak' hides more than its small size implies

Apr 19, 2011
The measured output image from a flat surface (left) and a cloaked protruded surface (right) at 1,480 nm (a), 1,550 nm (b), and 1,580 nm (c). Credit: Technical University of Denmark/Optics Express

Invisibility cloaks are seemingly futuristic devices capable of concealing very small objects by bending and channeling light around them. Until now, however, cloaking techniques have come with a significant limitation—they need to be orders of magnitude larger than the object being cloaked.

This places serious constraints on practical applications, particularly for the optoelectronics industry, where size is a premium and any cloaking device would need to be both tiny and delicate.

An international team of physicists from the Technical University of Denmark (DTU), the University of Birmingham, UK, and Imperial College London, however, may have overcome this size limitation by using a technology known as a "carpet cloaks," which can conceal a much larger area than other cloaking techniques of comparable size. The researchers achieved their result by using metamaterials, artificial materials engineered to have optical properties not found in nature. They describe their approach in the Optical Society's (OSA) open-access journal Optics Express.

Jingjing Zhang, a postdoctoral researcher at DTU's Fotonik Department of Photonics Engineering and Structured Electromagnetic Materials, and an author of the Optics Express paper, explains that the team's new carpet cloak, which is based on an alternating-layer structure on a silicon-on-insulator (SOI) platform, introduces a flexible way to address the size problem.

"This new cloak, consisting of metamaterials, was designed with a that is simpler than previous metamaterial structures for cloaks," she says.

Grating structures channel light of a particular wavelength around an object. A grating structure is simply a series of slits or openings that redirect a beam of light.

"The highly anisotropic material comprising the cloak is obtained by adopting semiconductor manufacturing techniques that involve patterning the top silicon layer of an SOI wafer with nanogratings of appropriate filling factor. This leads to a cloak only a few times larger than the cloaked object," says Zhang. In this case, filling factor simply refers to the size of the grating structure and determines the wavelengths of light that are affected by the cloak.

By precisely restoring the path of the reflecting wave from the surface, the cloak creates an illusion of a flat plane for a triangular bump on the surface—hiding its presence over wavelengths ranging from 1480nm to 1580nm (see figure).

In less technical terms, the carpet cloaks work by essentially disguising an object from light, making it appear like a flat ground plane.

"The cloak parameters can be tweaked by tuning the filling factor and the orientation of the layers," says Zhang. "Therefore, layered materials bypass the limitation of natural materials at hand and give us extra freedom to design the devices as desired." In contrast to previous works based on nanostructures, the cloaking carpet used in this work also shows advantages of easier design and fabrication.

The cloak is made exclusively of dielectric materials that are highly transparent to infrared light, so the cloak itself is very efficient and absorbs a negligible fraction of energy.

Zhang and her colleagues are also looking at ways of improving the technology. They report in their Optics Express paper that even though the cloaking ensures that the beam shape is unaffected by the presence of the object, the beam intensity is slightly reduced. They attribute this to reflection at the cloak's surface, and partly by imperfections of the fabrication. They also determined that adding an additional layer of material around the cloak and improving uniformity of the grating would help eliminate reflection and scattering issues.

"Although our experiment was carried out at near-infrared frequencies, this design strategy is applicable in other frequency ranges," notes Zhang. "We anticipate that with more precise fabrication, our technique should also yield a true invisibility carpet that works in the microwave and visible parts of the spectrum and at a larger size—showing promise for many futuristic defense and other applications."

Explore further: 'Dressed' laser aimed at clouds may be key to inducing rain, lightning

More information: "Homogenous optical cloak constructed with uniform layered structures," Jingjing Zhang, Liu Liu, Yo Luo, Shuang Zhang, and Niels Asger Mortensen, Optics Express, Volume 19, Issue 9, pp. 8625-8631. Available at: www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-9-8625

Related Stories

Researchers create 3-D invisibility cloak: study

Mar 18, 2010

European researchers have taken the world a step closer to fictional wizard Harry Potter's invisibility cape after they made an object disappear using a three-dimensional "cloak", a study published Thursday in the US-based ...

Next generation cloaking device demonstrated

Jan 15, 2009

A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

WarRoom
5 / 5 (1) Apr 19, 2011
"futuristic defense and other applications." Sweet, I can't wait to go outside a not see a cloaked North Korean UAV hovering over my house. This technology will surely be better for us all.
Norezar
5 / 5 (1) Apr 20, 2011
Well at least they won't be trying to sell us cheaply made sandals and handbags.
Mahal_Kita
not rated yet Apr 20, 2011
Well at least they won't be trying to sell us cheaply made sandals and handbags.


Of course 'they' will and US based importers will profit. Just as it has always been the case. Most Nike's are produced for a few dollars and resold for big bucks. The weird thing is.. That you buy them for big bucks and seem to be comfortable with doing so.

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...