Can big earthquakes disrupt world weather?

Apr 29, 2011

(PhysOrg.com) -- The eruption of the Laki volcano in Iceland in 1783-84 set off a cascade of catastrophe, spewing sulfuric clouds into Europe and eventually around the world. Poisonous mists and a resulting famine from loss of crops and livestock killed thousands in Iceland, up to a quarter of the population. An estimated 23,000 people in Britain died from inhaling toxic fumes. Acid rain, heat, cold, drought and floods have been attributed to the eruption, which lasted from June until February.

The recent earthquake in Japan shifted the earth’s axis by half a foot. You may be wondering if that’s enough to change earth’s . No, not really, says Jerry McManus, a climate scientist at Columbia’s Lamont-Doherty Earth Observatory.

Earthquakes unleash a tremendous amount of energy, but not enough to upset the energy balance of earth’s atmosphere and oceans, which drive weather patterns in the short term, he says. Larger shifts of the planet’s rotational axis happen each year due to the fluctuating mass of earth’s atmosphere and oceans without changing the weather. These natural variations can push earth’s axis up to 39 inches, far more than the Japan earthquake’s 6.5-inch nudge or the 2010 Chile earthquake’s 2.8-inch shift.
 
Those shifts are tiny compared to long-term, cyclical shifts in earth’s movement that can raise or lower the planet’s thermostat. The planet currently leans at a 23.5 degree angle as it circles the sun, causing winter at one end of the globe and summer at the other, as its orientation toward the sun redistributes the amount of sunlight falling on each hemisphere annually. But the seasons can be greatly intensified depending on variations in earth’s tilt over long timescales. Every 41,000 years or so, earth’s tilt shifts about a degree in each direction—the equivalent of nearly 70 miles. At its highest tilt—24.5 degrees—more sunlight falls on the poles; at its lowest—22.1 degrees—more light falls on the equator.
 
Two other astronomical cycles shape earth’s climate: the changing shape of its elliptical path around the sun every 100,000 years or so, and the shifting wobble of its axis—much like a spinning top—on average, every 21,000 years. All three cycles are caused by the gravitational tug of the moon and the planets in our solar system.
 
In the first half of the 20th century, Serbian mathematician Milutin Milankovitch painstakingly calculated how all three cycles—respectively referred to as obliquity, eccentricity and precession influence the amount of seasonal sunlight falling over the planet. Though the calculations that were his life’s work can now be made in a few minutes by a student using a laptop, the name “Milankovitch” still describes the cycles that are so fundamental to ’s climate.

Explore further: Barren deserts can host complex ecosystems in their soils

Related Stories

Maybe Ben Franklin was wrong

Apr 07, 2011

(PhysOrg.com) -- The eruption of the Laki volcano in Iceland in 1783-84 set off a cascade of catastrophe, spewing sulfuric clouds into Europe and eventually around the world. Poisonous mists and a resulting ...

SDO's crazy-looking Sun due to syzygy

Apr 04, 2011

It looks like something is eating the Sun in recent pictures from the Solar Dynamics Observatory — and in recent SDO videos, the Sun suddenly disappears! What is going on? Could it be aliens, Planet X, ...

Rings on the horizon

Jan 26, 2011

The Cassini spacecraft has taken a some recent images of two of Saturn’s most notorious moons, where in both images the planet’s rings serve as a backdrop. Above, Enceladus stands out with its cratered ...

How Earth's orbital shift shaped the Sahara

Dec 21, 2010

A change in the Earth’s orbit, many scientists believe, transformed the “Green Sahara” into what is now the largest desert on the planet. While scientists are still trying to find out if the ...

Recommended for you

Barren deserts can host complex ecosystems in their soils

14 minutes ago

"Biological soil crusts" don't look like much. In fact, people often trample right over these dark, or green-tinted, sometimes raised patches in the desert soil. But these scruffy stretches can house delicate ...

Researchers on expedition to solve 'small island problem'

34 minutes ago

Researchers from the Department of Electronic & Electrical Engineering are starting their new year with an expedition to the island of South Georgia to carry out research into improving weather forecasting. You can follow the team's progress on their blog. ...

Strong quake hits east Indonesia; no tsunami threat

22 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

moj85
2.3 / 5 (3) Apr 29, 2011
this article is from April 7th.. why is this reposted?
6_6
1 / 5 (2) Apr 29, 2011
so basically.. can weather disrupt weather?.. yes, yes it can.
sstritt
2 / 5 (4) Apr 29, 2011
Waste of time article.
omatumr
1.7 / 5 (6) Apr 29, 2011
Yes, many catastrophic events can alter Earth's climate.

See the following paper and references cited there: "Super-fluidity in the solar interior: Implications for solar eruptions and climate". Journal of Fusion Energy, 21, 193-198 (2001):

http://arxiv.org/...501441v1

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.