Auroral rocket observed flow of heat, particles and electromagnetic energy

January 6, 2011

The aurora borealis and aurora australis—the northern and southern lights—are visible manifestations of a connection between the Sun and Earth. Blasts of energy and magnetically charged particles from the Sun are constantly flowing out into space and crashing into the magnetic fields of Earth and other planets. At Earth, that energy stirs up the particles and energy trapped in Earth’s space, or magnetosphere, creating the auroras and disturbing the upper reaches of our atmosphere.

Photographers captured these digital photos of a four-stage Black Brant XII sounding rocket and the aurora borealis on December 12, 2010, during the NASA-funded Rocket Experiment for Neutral Upwelling (RENU). The rocket was launched from Andoya Rocket Range near Andenes, Norway, and carried instruments about 200 miles (320 kilometers) into the atmosphere to observe the aurora and the associated flow of heat, particles, and electromagnetic energy. The photograph of the aurora was taken from the Kjell Henrickson Observatory in Svalbard, which was under the apogee, or peak, of the rocket’s arc through the sky. The landed in the ocean about 900 miles (1450 km) from the launch site.

The goal of RENU was to measure the flow of particles and heat both into and out of Earth’s upper atmosphere near the North Pole during an auroral event. The solar wind stirs up Earth’s magnetic field and creates electrical currents in the ionosphere. Such disturbances can also heat the atoms of the thermosphere and other atmospheric layers, expanding them and creating extra drag on satellites and spacecraft, shortening their lifespan.

Around Earth’s poles, the magnetic field stretches out from the core of the planet into space and tucks back in at the opposite pole. The place where most of those field lines bunch up poke out of the Earth usually aligns in an auroral oval, where particles and energy from space precipitate and smash into the oxygen and nitrogen in the atmosphere to make the reds, greens, and whites of auroras. The funnel-shaped area inside that auroral oval—the polar cusp—is mostly open to space. RENU launched right into that cusp region to observe the flows of particles and energy both inbound and outbound.

Explore further: Experiment hurtled into aurora above Norway by NASA rocket

Related Stories

Experiment hurtled into aurora above Norway by NASA rocket

December 14, 2010

A team of scientists led by Marc Lessard of the University of New Hampshire Space Science Center launched an instrument-laden, four-stage sounding rocket from Norway's Andøya Rocket Range into aurora about 200 miles ...

Northern Lights in the classroom

September 1, 2010

A new model created by Lancaster University space scientist Dr Jim Wild is bringing the experience of the Northern Lights into the classroom.

Chandra probes high-voltage auroras on Jupiter

March 2, 2005

Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray ...

Recommended for you

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

To keep Saturn's A ring contained, its moons stand united

October 17, 2017

For three decades, astronomers thought that only Saturn's moon Janus confined the planet's A ring - the largest and farthest of the visible rings. But after poring over NASA's Cassini mission data, Cornell astronomers now ...

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...

Webcam on Mars Express surveys high-altitude clouds

October 17, 2017

An unprecedented catalogue of more than 21 000 images taken by a webcam on ESA's Mars Express is proving its worth as a science instrument, providing a global survey of unusual high-altitude cloud features on the Red Planet.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.