Atomic-level crystal gazing: Revelation of crystallization mechanism enables fast writing of data to DVDs

Apr 08, 2011
Figure 1: Pulses of light alter the atomic bonds (red) in the material AIST, enabling quick storage and deletion of data. Credit: 2011 Masaki Takata

Some 300 exabytes (3 × 1020 bytes) of information were stored in electronic media -- magnetic disks and tapes or optical disks -- throughout the world by 2007. Yet, the demand for electronic storage grows daily, driving an ever-increasing need to pack data into smaller volumes in quicker time. By studying how laser pulses alter the atomic structure of data-storage materials, a research team in Japan has uncovered a fundamental mechanism that could aid in the design of even faster information storage in the future1. The finding was published by Masaki Takata from the RIKEN SPring-8 Center, Harima, Shinji Kohara from the Japan Synchrotron Radiation Research Institute/SPring-8, Noboru Yamada from Panasonic Corporation and a team of scientists from Japan, Germany and Finland.

Rewritable memory, such as the random-access memory found in computers or on DVDs, is based on a phase change in specific types of materials in which the atoms change from one stable arrangement to another. Pulses of laser light can induce a phase change, a process known as ‘writing,’ and the material’s phase can be identified by ‘reading’ its signature optical properties.

To provide the first full understanding of the atomic structure of one such phase-change material, AgInSbTe (AIST)—often used in rewritable DVDs—Takata and his colleagues combined state-of-the-art materials-analysis techniques and theoretical modeling. A pulse of light can change AIST from an amorphous state, in which the atoms are disordered, into a crystalline phase in which the atoms are form an ordered-lattice structure. This process of crystallization happens in just a few tens of nanoseconds: the faster the crystallization, the faster data can be written and erased. No-one understood, however, why phase changes in AIST were so fast.

The teams’ analyses and modeling showed that AIST crystallizes in a different way to other commercially available phase-change materials. They found that crystallization of AIST is a simple process: the laser light excites the bonding electrons and causes them to move. A central atom of antimony (Sb) switches between one long (amorphous) and one short (crystalline) bond without any bond breaking (Fig. 1). “We hope to verify this bond-interchange model in the near future,” says Takata. “Crystallization is the storage-rate-limiting process in all phase-change materials, and an atomistic understanding of it is essential.”

The researchers also discovered that the absence of cavities within the crystal structure contributes to the faster writing speeds on AIST. This contrasts starkly with the alternative material germanium antimony telluride in which 10% of lattice sites in are empty.

Explore further: Technique simplifies the creation of high-tech crystals

More information: Matsunaga, T., et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nature Materials 10, 129–134 (2011). www.nature.com/nmat/journal/v1… n2/abs/nmat2931.html

add to favorites email to friend print save as pdf

Related Stories

Supercomputer unravels structures in DVD materials

Jan 09, 2011

Although the storage of films and music on a DVD is part of our digital world, the physical basis of the storage mechanism is not understood in detail. In the current issue of the leading journal Nature Ma ...

Digital memory enters a new phase

Mar 15, 2005

With the recent explosion in the popularity of digital music, digital photography and even digital video, the demand for faster, higher-capacity and cheaper computer memory has never been greater. Writing in the April issue ...

Faster than a Speeding Bubble

Apr 30, 2008

What do melting chocolate and bubbles in a champagne glass have in common? Besides being treats one might sample at a sophisticated soiree, they are both handy examples of first-order phase transitions in ...

Recommended for you

IHEP in China has ambitions for Higgs factory

8 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

10 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

11 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

14 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Eikka
5 / 5 (3) Apr 08, 2011
Rewritable memory, such as the random-access memory found in computers


No it isn't. DRAM is based on storing electric charge in a capacitor.
holoman
not rated yet Apr 10, 2011
3D holographic molecular storage using ferroelectrics
published many years ago on the web using same technology.