Suggesting genes' friends, Facebook-style

Mar 07, 2011
By silencing genes two at a time in cells like these, the scientists can analyze the genes’ combined effects. In this microscopy image of human cells, nuclei are shown in red, cell membranes in green, and the cellular scaffolding in blue. Credit: © Christina Laufer/ DKFZ

Scientists at the European Molecular Biology Laboratory (EMBL) and the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, have developed a new method that uncovers the combined effects of genes. Published online today in Nature Methods, it helps understand how different genes can amplify, cancel out or mask each others' effects, and enables scientists to suggest genes that interfere with each other in much the same manner that facebook suggests friends.

To understand the connections between genetic make-up and traits like disease susceptibility, scientists have been turning to genome-wide association studies, in which they compare genetic variants of people with a particular disease to those of healthy people. Such studies have linked many to diseases, but these links were often weak and not clear-cut, possibly because individual genes often do not act alone. The effects of a particular gene can depend on what other genes a person carries, and the new method developed by the teams of Wolfgang Huber at EMBL and Michael Boutros at DKFZ enables scientists to uncover and measure those combined effects.

The scientists took a set of genes that are important for cell signalling and, using a technique called , silenced those genes two at a time, and compared the effect to what happens when you silence only one or the other member of each pair. In so doing, they were able to identify a new component in a cell-signalling process known as the Ras pathway, which is involved in , and is known to go awry in .

If two people have many friends in common on facebook, the odds are that those two people know each other – even if they themselves are not facebook friends. Similarly, genes that have similar genetic interaction profiles are likely to influence each other's effects, and Huber, Boutros and colleagues can now suggest such 'friends' – i.e. genes that are likely to affect the same cellular processes. In the long run, this could help predict patient outcomes and adapt treatments for diseases such as cancer.

Explore further: Can tapioca replace corn as the main source for starch sweeteners?

Related Stories

Scientists identify cholesterol-regulating genes

Jul 07, 2009

Scientists at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have come a step closer to understanding how cholesterol levels are regulated. In a study published today in the journal ...

Structure relevant to cell growth

Oct 22, 2005

Utah researchers found a special type of molecular structure that helps keep genes properly turned off until the structure is ejected.

Recommended for you

Project launched to study evolutionary history of fungi

8 hours ago

The University of California, Riverside is one of 11 collaborating institutions that have been funded a total of $2.5 million by the National Science Foundation for a project focused on studying zygomycetes – ancient li ...

Different watering regimes boost crop yields

12 hours ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

Woolly mammoth genome sequencer at UWA

13 hours ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

User comments : 0