Cassini sees seasonal methane rains transform Titan's surface (w/ video)

March 17, 2011
NASA's Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn's largest moon, Titan. Image credit: NASA/JPL/SSI

(PhysOrg.com) -- As spring continues to unfold at Saturn, April showers on the planet's largest moon, Titan, have brought methane rain to its equatorial deserts, as revealed in images captured by NASA's Cassini spacecraft. This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes.

Extensive rain from large cloud systems, spotted by Cassini's cameras in late 2010, has apparently darkened the surface of the moon. The best explanation is these areas remained wet after methane rainstorms. The observations released today in the journal Science, combined with earlier results in Geophysical Research Letters last month, show the weather systems of Titan's thick atmosphere and the changes wrought on its surface are affected by the changing seasons.

"It's amazing to be watching such familiar activity as rainstorms and seasonal changes in on a distant, icy satellite," said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Md., and lead author of today's publication. "These observations are helping us to understand how Titan works as a system, as well as similar processes on our own planet."

This video is not supported by your browser at this time.
Clouds move above the large methane lakes and seas near the north pole of Saturn's moon Titan in this movie made from images taken by NASA's Cassini spacecraft. Image credit: NASA/JPL/SSI

The Saturn system experienced equinox, when the sun lies directly over a planet's equator and seasons change, in August 2009. (A full Saturn "year" is almost 30 Earth years.) Years of Cassini observations suggest Titan's global atmospheric responds to the changes in solar illumination, influenced by the atmosphere and the surface, as detailed in the paper. Cassini found the surface temperature responds more rapidly to sunlight changes than does the thick atmosphere. The changing circulation pattern produced clouds in Titan's equatorial region.

Clouds on Titan are formed of methane as part of an Earth-like cycle that uses methane instead of water. On Titan, methane fills lakes on the surface, saturates clouds in the , and falls as rain. Though there is evidence that liquids have flowed on the surface at Titan's equator in the past, liquid hydrocarbons, such as methane and ethane, had only been observed on the surface in lakes at polar latitudes. The vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. Scientists suspected that clouds might appear at Titan's equatorial latitudes as spring in the northern hemisphere progressed. But they were not sure if dry channels previously observed were cut by seasonal rains or remained from an earlier, wetter climate.

Image redit: P. Huey/Science © 2011 AAAS

An arrow-shaped storm appeared in the equatorial regions on Sept. 27, 2010 -- the equivalent of early April in Titan's "year" -- and a broad band of clouds appeared the next month. As described in the Science paper, over the next few months, Cassini's imaging science subsystem captured short-lived surface changes visible in images of Titan's surface. A 193,000-square-mile (500,000-square-kilometer) region along the southern boundary of Titan's Belet dune field, as well as smaller areas nearby, had become darker. Scientists compared the imaging data to data obtained by other instruments and ruled out other possible causes for surface changes. They concluded this change in brightness is most likely the result of surface wetting by methane rain.

These observations suggest that recent weather on Titan is similar to that over Earth's tropics. In tropical regions, Earth receives its most direct sunlight, creating a band of rising motion and rain clouds that encircle the planet.

"These outbreaks may be the Titan equivalent of what creates Earth's tropical rainforest climates, even though the delayed reaction to the change of seasons and the apparently sudden shift is more reminiscent of Earth's behavior over the tropical oceans than over tropical land areas," said Tony Del Genio of NASA's Goddard Institute for Space Studies, New York, a co-author and a member of the Cassini imaging team.

For comparison, this image of Texas obtained by astronauts aboard NASA's Gemini 4 spacecraft on June 5, 1965, shows a large dark swath attributed to rainfall. The dark areas correspond to regions that received more than one inch of rain in the days before the image was obtained. The large swath is about 16 kilometers (10 miles) across near the western (left) end. Credit: NASA/Johnson Space Center

On Earth, the tropical bands of rain clouds shift slightly with the seasons but are present within the tropics year-round. On Titan, such extensive bands of clouds may only be prevalent in the tropics near the equinoxes and move to much higher latitudes as the planet approaches the solstices. The imaging team intends to watch whether evolves in this fashion as the seasons progress from spring toward northern summer.

"It is patently clear that there is so much more to learn from Cassini about seasonal forcing of a complex surface-atmosphere system like Titan's and, in turn, how it is similar to, or differs from, the Earth's," said Carolyn Porco, Cassini imaging team lead at the Space Science Institute, Boulder, Colo. "We are eager to see what the rest of Cassini's Solstice Mission will bring."

Explore further: Cassini Images of Titan Reveal an Active, Earth-like World

More information: “Rapid and Extensive Surface Changes Near Titan’s Equator: Evidence of April Showers.” E.P. Turtle, J.E. Perry, A.G. Hayes, R.D. Lorenz, J.W. Barnes, A.S. McEwen, R.A. West, A.D. Del Genio, J.M. Barbara, J.I. Lunine, E.L. Schaller, T.L. Ray, R.M.C. Lopes, E.R. Stofan. Science, Vol 331, March 18, 2011. DOI:10.1126/science.1201063

Related Stories

Cassini Images of Titan Reveal an Active, Earth-like World

March 9, 2005

Saturn's largest and hazy moon, Titan, has a surface shaped largely by Earth-like processes of tectonics, erosion, winds, and perhaps volcanism. The findings are published in this week's issue of the journal Nature. Titan, ...

Cassini Finds Hydrocarbon Rains May Fill Titan Lakes

January 30, 2009

(PhysOrg.com) -- A region on Saturn's moon Titan's southern latitudes appears to have been flooded by a summer cloudburst of hydrocarbon rain, as seen in images from NASA's Cassini spacecraft taken before and after a large ...

Cassini Maps Global Pattern of Titan's Dunes

February 27, 2009

(PhysOrg.com) -- Titan's vast dune fields, which may act like weather vanes to determine general wind direction on Saturn's biggest moon, have been mapped by scientists who compiled four years of radar data collected by the ...

Cassini gazes at veiled Titan

September 23, 2010

(PhysOrg.com) -- NASA's Cassini spacecraft will swing high over Saturn's moon Titan on Friday, Sept. 24, taking a long, sustained look at the hazy moon. At closest approach, Cassini will fly within 8,175 kilometers (5,080 ...

Recommended for you

The search for molecular oxygen among cosmic oxygen atoms

July 27, 2015

Oxygen is the third most abundant element in the universe (after hydrogen and helium) and of course it is important: all known life forms require liquid water and its oxygen content. For over thirty years, astronomers have ...

Hubble looks in on a galactic nursery

July 27, 2015

This dramatic image shows the NASA/ESA Hubble Space Telescope's view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an ...

Fossil star clusters reveal their age

July 27, 2015

Using a new age-dating method, an international team of astronomers has determined that ancient star clusters formed in two distinct epochs – the first 12.5 billion years ago and the second 11.5 billion years ago.

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Mercury_01
5 / 5 (1) Mar 17, 2011
This must surely come as a relief to the plains gazelle herd.
omatumr
4 / 5 (6) Mar 17, 2011
The outer planets consists largely of light elements like H, He, C and N.

It is not surprising that "rain" there might be ammonia (NH3) or methane (CH4) or ethane (C2H6), depending on the temperature.

With kind regards,
Oliver K. Manuel
Ethelred
5 / 5 (1) Mar 18, 2011
lili49 is another spammer.

Gets an A for originality for using a minilink to hide the fact that the site is selling shoes. Gets an abuse report for spamming this and many other sites as can be seen by googling the link.

Ethelred
GSwift7
not rated yet Mar 18, 2011
That would just be so strange to see. Imagine being in a habitat on the surface of Titan. What would happen if you went outside and tracked some methane mud back into the habitat on your boots?
Eikka
not rated yet Mar 18, 2011
Imagine for a second that there was a life form on titan that lived on methane and ammonia like we do on water, and everything they know of is composed of chemistries that operate at hundreds of degrees below zero.

We, to them, would be like men made out of living lava. An interesting thought.
Eikka
not rated yet Mar 18, 2011
What would happen if you went outside and tracked some methane mud back into the habitat on your boots?


It would fizzle a lot and leave an oil slick.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.